Veritas NetBackup™ for Microsoft SQL Server Administrator's Guide

for Windows

Release 8.3
Veritas NetBackup™ for Microsoft SQL Server Administrator's Guide

Last updated: 2020-07-28

Legal Notice

Copyright © 2020 Veritas Technologies LLC. All rights reserved.

Veritas, the Veritas Logo, and NetBackup are trademarks or registered trademarks of Veritas Technologies LLC or its affiliates in the U.S. and other countries. Other names may be trademarks of their respective owners.

This product may contain third-party software for which Veritas is required to provide attribution to the third party ("Third-party Programs"). Some of the Third-party Programs are available under open source or free software licenses. The License Agreement accompanying the Software does not alter any rights or obligations you may have under those open source or free software licenses. Refer to the Third-party Legal Notices document accompanying this Veritas product or available at:

https://www.veritas.com/about/legal/license-agreements

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation/reverse engineering. No part of this document may be reproduced in any form by any means without prior written authorization of and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19 "Commercial Computer Software - Restricted Rights" and DFARS 227.7202, et seq. "Commercial Computer Software and Commercial Computer Software Documentation," as applicable, and any successor regulations, whether delivered by Veritas as on premises or hosted services. Any use, modification, reproduction release, performance, display or disclosure of the Licensed Software and Documentation by the U.S. Government shall be solely in accordance with the terms of this Agreement.

2625 Augustine Drive
Santa Clara, CA 95054

http://www.veritas.com
Technical Support

Technical Support maintains support centers globally. All support services will be delivered in accordance with your support agreement and the then-current enterprise technical support policies. For information about our support offerings and how to contact Technical Support, visit our website:

https://www.veritas.com/support

You can manage your Veritas account information at the following URL:

https://my.veritas.com

If you have questions regarding an existing support agreement, please email the support agreement administration team for your region as follows:

Worldwide (except Japan) CustomerCare@veritas.com
Japan CustomerCare_Japan@veritas.com

Documentation

Make sure that you have the current version of the documentation. Each document displays the date of the last update on page 2. The latest documentation is available on the Veritas website:

https://sort.veritas.com/documents

Documentation feedback

Your feedback is important to us. Suggest improvements or report errors or omissions to the documentation. Include the document title, document version, chapter title, and section title of the text on which you are reporting. Send feedback to:

NB.docs@veritas.com

You can also see documentation information or ask a question on the Veritas community site:

http://www.veritas.com/community/

Veritas Services and Operations Readiness Tools (SORT)

Veritas Services and Operations Readiness Tools (SORT) is a website that provides information and tools to automate and simplify certain time-consuming administrative tasks. Depending on the product, SORT helps you prepare for installations and upgrades, identify risks in your datacenters, and improve operational efficiency. To see what services and tools SORT provides for your product, see the data sheet:

Contents

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Introducing NetBackup for SQL Server</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of NetBackup for SQL Server</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Installing NetBackup for SQL Server</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning the installation of NetBackup for SQL Server</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Verifying the operating system and platform compatibility</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Managing SQL Server objects for use with SQL Server Intelligent Policies</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the Applications utility</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>About discovery of SQL Server objects</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Discovering instances on demand</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Discover advanced or basic availability groups on demand</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Discover read-scale availability groups</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>About registering SQL Server instances and availability group replicas</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>About credentials used with SQL Server Intelligent Policy</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Configuring the NetBackup services for SQL Server backups and restores</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Configuring local security privileges for SQL Server</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Registering a SQL Server instance or availability replica</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Registering instances or availability replicas with an instance group</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Registering instances or availability replicas automatically</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Authorizing a DBA to register instances or availability replicas with the <code>nbsqladm</code> command</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Deleting SQL Server objects from the Applications utility</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Manually add a SQL Server instance</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Deactivating or activating an instance</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Cleaning up instances</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 7 Protecting SQL Server data with VMware backups ... 87

About protecting SQL Server data with VMware backups ... 87
Limitations of VMware application backups ... 88
Installing the Veritas VSS provider for vSphere ... 89
About configuring NetBackup for VMware backups that protect SQL Server ... 90
Configuring the NetBackup services for a VMware backup that protects SQL Server ... 91
Configuring a VMware backup policy to protect SQL Server ... 92
Configuring a VMware policy to protect SQL Server using Replication Director to manage snapshot replication ... 94
Restoring SQL Server databases from a VMware backup ... 95

Chapter 8 Configuring backups with Snapshot Client ... 96

About NetBackup Snapshot Client for SQL Server ... 96
How SQL Server operations use Snapshot Client .. 97
Configuration requirements for SQL Server snapshot and Instant Recovery backups 99
Configuring a snapshot policy for SQL Server ... 100
Configuring a policy for Instant Recovery backups of SQL Server .. 102
Using copy-only snapshot backups to affect how differentials are based ... 104
Creating a copy-only backup (legacy SQL Server policies) .. 105
Creating an Instant Recovery backup that is not copy-only (legacy SQL Server policies) ... 106
About SQL Server agent grouped backups (legacy SQL Server policies) ... 106
Requirements for a grouped backup .. 107
Viewing the progress of a grouped backup .. 107
Restoring a database backed up in a group ... 108
Chapter 9 Protecting SQL Server availability groups 110
 About protecting SQL Server availability groups 110
 Protecting SQL Server availability groups with intelligent policies 112
 Prerequisites for protecting SQL Server availability groups 112
 Configuring a backup policy to protect a SQL Server availability group ... 113
 Protecting SQL Server availability groups with legacy policies 117
 About protecting the preferred replica in a SQL Server availability group (legacy backup policies) 118
 About protecting a specific node in a SQL Server availability group (legacy backup policies) ... 123
 Protect a SQL Server availability group that crosses NetBackup domains ... 126
 Browsing for SQL Server availability group backup images 127
 Restoring a SQL Server availability database to a secondary replica ... 128
 Restoring a SQL Server availability database to the primary and the secondary replicas ... 129
 Restoring an availability database when an availability group crosses NetBackup domains ... 130

Chapter 10 Protecting SQL Server in a cluster environment 132
 Configuring backups of clustered SQL Server instances (SQL Server Intelligent Policy) ... 132
 Configuring backups of clustered SQL Server instances (legacy SQL Server policies) ... 134
 Performing a restore of a virtual SQL Server instance 135

Chapter 11 Configuring backups with legacy SQL Server policies using clients and batch files 136
 About legacy SQL Server policies .. 137
 About configuring backups with legacy SQL Server policies 137
 Configuring the NetBackup services for SQL Server backups and restores (legacy SQL Server policies) ... 138
 About SQL Server security with NetBackup legacy backup policies ... 139
 About using batch files with NetBackup for SQL Server 140
 Keywords and values used in batch files 141
 Creating a batch file ... 153
 Running batch files .. 154
Performing restores of a SQL Server cluster when you have multiple NICs .. 186

Chapter 13 Performance and troubleshooting ... 189
What are the components of NetBackup for SQL Server? 190
How does NetBackup for SQL Server back up a database? 192
How does NetBackup for SQL Server recover a database? 192
Performing a manual backup .. 193
About debug logging for SQL Server troubleshooting 193
Setting the debug level .. 195
Veritas VSS provider logs .. 195
About NetBackup for SQL performance factors 196
About monitoring NetBackup for SQL Server operations 199
Setting the maximum trace level for NetBackup for SQL Server 201
Troubleshooting credential validation ... 202
Reporting of unsuccessful filegroup or file backups 203
About minimizing timeout failures on large SQL Server database restores .. 203
Troubleshooting VMware backups and restores of SQL Server 204
Delays in completion of backup jobs ... 205
SQL Server log truncation failure during VMware backups of SQL Server ... 206
SQL Server restore fails when you restore a SQL Server compressed backup image as a single stripe or with multiple stripes 206
Incorrect backup images are displayed for availability group clusters .. 207
A restore of a SQL Server database fails with Status Code 5, or Error (-1), when the host name of the SQL Server or the SQL Server database name has trailing spaces .. 207
A move operation fails with Status Code 5, or Error (-1), when the SQL Server host name, the database name, or the database logical name has trailing spaces ... 208
About disaster recovery of SQL Server .. 208
Preparing for disaster recovery of SQL Server 209
Recovering SQL Server databases after disaster recovery 209

Appendix A Other configurations ... 211
Configuring multiplexed backups of SQL Server 211
Restoring a multiplexed SQL Server backup 212
About SQL Server backups and restores in an SAP environment 212
Creating batch files for automatic backups in for SQL Server in an SAP environment ... 212
Introducing NetBackup for SQL Server

This chapter includes the following topics:

- Overview of NetBackup for SQL Server

Overview of NetBackup for SQL Server

NetBackup for SQL Server provides the capability for backups and restores of SQL Server databases. NetBackup offers the following types of SQL Server backup policies:

- SQL Server Intelligent Policies. A single policy protects multiple SQL Server instances that are spread over multiple clients. You select instances for a policy from a list of instances that are automatically discovered in the NetBackup environment.

- Legacy policies, using clients and batch files. These policies include a list of SQL database clients and a batch file that contains SQL backup commands to run when the backup is scheduled.

The NetBackup MS SQL Client lets you perform the following operations:

- View discovered instances, databases, or availability groups.
- Restore databases and database components.
- Configure restore options.
- Monitor restore operations.
- (SQL Server legacy policies) Backups of databases and database components and configuration of backup options.
In this guide, Microsoft SQL Server is referred to as SQL Server. NetBackup for Microsoft SQL Server is referred to as NetBackup for SQL Server.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetBackup integration</td>
<td>Full integration with the NetBackup master server and media manager. Job monitoring from the server and the NetBackup MS SQL Client interface.</td>
</tr>
<tr>
<td>SQL Server Intelligent Policy</td>
<td>The following benefits are included:</td>
</tr>
<tr>
<td></td>
<td>■ Create a single policy to protect multiple SQL Server instances or instance databases or a policy to protect availability groups or availability databases. Instances can be spread over multiple clients.</td>
</tr>
<tr>
<td></td>
<td>■ Include a full, differential, and transaction log backup in the same policy.</td>
</tr>
<tr>
<td></td>
<td>■ Schedule frequent backups of transaction logs.</td>
</tr>
<tr>
<td></td>
<td>■ You are not required to know SQL Server commands or to write and use batch files. Instead, this feature automatically generates the batch files at run-time.</td>
</tr>
<tr>
<td>Management of SQL Server objects for use with Intelligent Policies</td>
<td>NetBackup automatically discovers SQL Server instances and availability groups in the environment. You can also perform manual discovery. After instances or replicas are registered, a SQL Server Intelligent Policy can be created that protects instances or availability groups. The user can also use instance groups to organize instances or replicas and, optionally, automatically register those objects.</td>
</tr>
<tr>
<td>Authentication and credentials</td>
<td>SQL Server Intelligent Policy supports the following:</td>
</tr>
<tr>
<td></td>
<td>■ Windows authentication and Windows Active Directory authentication.</td>
</tr>
<tr>
<td></td>
<td>■ With the proper configuration, you do not have to run the NetBackup service account as a privileged SQL Server user on the client.</td>
</tr>
<tr>
<td></td>
<td>■ The SQL Server DBA can manage the SQL Server credentials and instance registration independently from the NetBackup administrator, with the nbsqadm command.</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Backup and restore features</td>
<td>The following features are available for backups and restores:</td>
</tr>
<tr>
<td></td>
<td>- Backups and are managed entirely by the NetBackup server from a central location. Administrators can schedule automatic, unattended backups for instances on local or remote hosts across the network.</td>
</tr>
<tr>
<td></td>
<td>- NetBackup supports the backup of databases, files, filegroups, transaction logs.</td>
</tr>
<tr>
<td></td>
<td>- Backup schedules for full, differential, or transaction log backups.</td>
</tr>
<tr>
<td></td>
<td>- Manual backups and copy-only backups.</td>
</tr>
<tr>
<td></td>
<td>- Backups and restores of only read-write filegroups.</td>
</tr>
<tr>
<td></td>
<td>- Support for high availability (HA) environments, including SQL Server clusters and availability groups.</td>
</tr>
<tr>
<td></td>
<td>- An administrator that uses the NetBackup MS SQL Server Client can browse backups and select the ones to be restored.</td>
</tr>
<tr>
<td></td>
<td>- Restore SQL Server objects to different locations (redirected restores).</td>
</tr>
<tr>
<td></td>
<td>- When the Encryption attribute is enabled, NetBackup encrypts the backup for the instances or clients that are listed in the policy.</td>
</tr>
<tr>
<td></td>
<td>- Ability to use multiple stripes during a backup.</td>
</tr>
<tr>
<td></td>
<td>- Tuning options that can improve the performance of backups.</td>
</tr>
<tr>
<td>Stream-based backups and restores</td>
<td>Stream-based backup and restore of SQL Server objects with SQL Server's high-speed virtual device interface.</td>
</tr>
<tr>
<td>Snapshot backups and instant access databases</td>
<td>NetBackup can perform backups of SQL Server with snapshot methodology. Also available are off-host backups, Instant Recovery, and backups with a hardware provider.</td>
</tr>
<tr>
<td>Support for VMware backups that protect SQL Server</td>
<td>Support for application-consistent backups of VMware computers using the VMware intelligent policy. The VMware intelligent policy includes three features that NetBackup for SQL Server supports: VMware snapshots, Replication Director (RD) snapshots, and Accelerator. Only full backups are supported on these three variations of the VMware intelligent policy.</td>
</tr>
<tr>
<td></td>
<td>See the following documents for more information.</td>
</tr>
<tr>
<td></td>
<td>NetBackup for VMware Administrator's Guide</td>
</tr>
<tr>
<td></td>
<td>NetBackup Replication Director Solutions Guide</td>
</tr>
<tr>
<td></td>
<td>NetBackup Administrator's Guide, Volume I</td>
</tr>
<tr>
<td>NetBackup encryption</td>
<td>When the Encryption attribute is enabled, NetBackup encrypts the backup for the instances or clients that are listed in the policy.</td>
</tr>
<tr>
<td>Multistreaming</td>
<td>Ability to use multiple stripes during a backup.</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Legacy SQL Server policies</td>
<td>Support for the legacy backup policies that use batch files and a list of clients.</td>
</tr>
</tbody>
</table>
Installing NetBackup for SQL Server

This chapter includes the following topics:

- Planning the installation of NetBackup for SQL Server
- Verifying the operating system and platform compatibility

Planning the installation of NetBackup for SQL Server

Table 2-1 shows the major installation steps that are needed to run NetBackup for SQL Server. Each step contains one or more links to pertinent procedures and concepts.

Table 2-1 Installation steps for NetBackup for SQL Server

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify the operating system and platform compatibility.</td>
<td>See “Verifying the operating system and platform compatibility” on page 17.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See the NetBackup Compatibility Lists.</td>
</tr>
</tbody>
</table>
Table 2-1 Installation steps for NetBackup for SQL Server (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 2 | Install the NetBackup client software on the computers that have the databases that you want to back up. Note the following:
- In a VMware environment, install the NetBackup client software on the virtual machines that have SQL Server running.
- For SQL Server availability groups, install the client on each replica in the availability group where you want backups to occur.
- In a SQL Server cluster environment, install the NetBackup client on each node in the cluster.
- If you have multiple NICs, install the NetBackup client using the private interface name.
- If the SQL Server client is on a different host than the master server or media server, then install the NetBackup client on that host. | The NetBackup for SQL Server agent is installed with the NetBackup client software. If the database is clustered, you must use the same version of NetBackup on each node in the cluster. To use the new features that are included in NetBackup for SQL Server in NetBackup 8.3, upgrade your NetBackup for SQL Server clients to NetBackup 8.3. The NetBackup media server must use the same version as or a higher version than the NetBackup for SQL Server client. |
| Step 3 | If you plan to use NetBackup for SQL Server on a NetBackup server configured in a NetBackup cluster, verify the following requirements:
- NetBackup supports your cluster environment.
- The NetBackup server software is installed and configured to work in a NetBackup cluster.
- The NetBackup client software is installed and operational on each node to which NetBackup can failover.
- A valid license for NetBackup for SQL Server must exist on each node where NetBackup server resides. | See the Software Compatibility List (SCL).
See the NetBackup Installation Guide.
See the NetBackup Clustered Master Server Administrator's Guide. |
| Step 4 | Verify that master server has a valid license for NetBackup for SQL Server and any NetBackup options or add-ons that you want to use. | |
Verifying the operating system and platform compatibility

Verify that the NetBackup for SQL Server agent is supported on your operating system or platform.

To verify operating system and compatibility

1. Go to the NetBackup compatibility list site.
 http://www.netbackup.com/compatibility
2. Click on the following document:
 Application/Database Agent Compatibility List
3. For information on support for Snapshot Client, see the following document:
 Snapshot Client Compatibility List
4. For information on support for VMware, see the following document:
 Statement of Support for NetBackup in a Virtual Environment (Virtualization Technologies)
Managing SQL Server objects for use with SQL Server Intelligent Policies

This chapter includes the following topics:

- About the Applications utility
- About discovery of SQL Server objects
- About registering SQL Server instances and availability group replicas
- Deleting SQL Server objects from the Applications utility
- Manually add a SQL Server instance
- Deactivating or activating an instance
- Cleaning up instances

About the Applications utility

NetBackup displays the instances and availability groups that it discovers in the Applications > Microsoft SQL Server node of the NetBackup Administration Console, along with any instances you add manually. The properties for an instance, replica, or instance group indicate the name of any Intelligent Policies that protect those objects. Legacy policies (that use clients and batch files) are not reflected in the Applications utility. The Microsoft SQL Server node contains the following subnodes:

- All Instances
Contains all SQL Server instances that NetBackup discovers or that you manually added. Instances that belong to an availability group are also included in this list.

- **Instance Groups**
 Contains any instance groups that you created. You can use instance groups to organize instances or replicas and to register all objects in the group with a single set of credentials.

- **Availability Groups**
 Displays all SQL Server availability groups that NetBackup discovers.

About discovery of SQL Server objects

NetBackup discovery runs regularly and gathers information for instances and for advanced and basic availability groups in your environment. (Read-scale availability groups must be discovered manually.) The data expires after one hour. The NetBackup Discovery Service (`nbdisco`) runs “shallow” discovery every 8 hours for instances and availability groups on the clients for that master server. The NetBackup Agent Request Service (NBARS) polls the master server every 5 minutes for any non-expired data.

Deep discovery includes discovery of databases and is performed in the following circumstances:

- After a full backup, an incremental backup, or a restore occurs
 The client sends details when database data is changed and not more than every 15 minutes.

- When you run a manual discovery of databases or availability groups

- After you add credentials for the instances or replicas

By default, this service reports to the master server when it finds SQL Server instances. However, the user can turn off discovery for a specific client, with the `bpsetconfig` utility. See the `REPORT_CLIENT_DISCOVERIES` option in the NetBackup Administrator’s Guide, Volume I.

The client maintains a cache file `NBinstancename_cache_v1.0.dat` in the `NetBackup\dbext\mssql` directory for each instance. The file can be deleted and NetBackup recreates it after the next full backup when deep discovery data is sent again.

To discover the instances that you created since the last discovery, select Actions > Discover Instances. To update an AG with any new instances, select the AG and choose Actions > Rescan Availability Group.
Discovering instances on demand

You can manually start the NetBackup discovery process if you want to immediately discover new SQL Server instances or availability group instances in your environment.

To discover new SQL Server instances

1. Expand NetBackup Management > Applications > Microsoft SQL Server > Instances.
2. Select Actions > Discover Instances.

Discover advanced or basic availability groups on demand

You can manually start the NetBackup discovery process if you want to immediately discover advanced or basic availability groups or replicas or discover databases in your environment. The instances or replicas must have credentials before you can perform on-demand discovery.

To discover advanced or basic availability groups

1. Expand NetBackup Management > Applications and select Microsoft SQL Server.
2. Select Actions > Discover Availability Groups.
3. From the Instance list, select a replica that is part of the availability group.
 Note that only registered replicas are shown in this list.
4. Click OK.

Discover read-scale availability groups

Read-scale availability groups are not discovered automatically. You must specify one of the replicas in the availability group and manually start discovery.

To discover read-scale availability groups

1. Expand NetBackup Management > Applications > Microsoft SQL Server and select All Instances.
2. In the right pane, right-click one of the replicas that is part of the availability group and click Register.
3. Provide the credentials for the replica.
 See “About registering SQL Server instances and availability group replicas” on page 21.
4 Expand **NetBackup Management > Applications** and select **Microsoft SQL Server**.

5 Select **Actions > Discover Availability Groups**.

6 From the **Instance** list, select a replica that is part of the availability group.
 Note that only registered replicas are shown in this list.

7 Click **OK**.

About registering SQL Server instances and availability group replicas

All instances and availability group replicas that you want protected as part of a SQL Server Intelligent Policy must be registered with credentials. These credentials must have certain privileges.

See “**About credentials used with SQL Server Intelligent Policy**” on page 21.

Instances or replicas can be registered in one of the following ways:

- Manually, for individual instances or replicas.
 See “**Registering a SQL Server instance or availability replica**” on page 27.

- Manually, by adding instances or replicas to an instance group.
 See “**Registering instances or availability replicas with an instance group**” on page 28.

- Automatically, by configuring an instance group to automatically register newly discovered instances or replicas.
 See “**Registering instances or availability replicas automatically**” on page 31.

- Manually, with the nbsqladm command.

The NetBackup administrator can also authorize a DBA to manually register instances or replicas.

See “**Authorizing a DBA to register instances or availability replicas with the nbsqladm command**” on page 32.

About credentials used with SQL Server Intelligent Policy

SQL Server instances or replicas must be registered with Windows credentials that have the proper permissions to perform backup and restore operations. Intelligent Policy supports Windows authentication and Windows Active Directory authentication. It does not support Mixed Mode or SQL Server authentication.

Credentials are not supported at the database or the availability group level.
<table>
<thead>
<tr>
<th>Option to register credentials</th>
<th>Environment and configuration</th>
</tr>
</thead>
</table>
| **Use these specific credentials (recommended)** | ■ The SQL Server DBA provides the NetBackup administrator with the SQL Server user credentials.
■ The SQL Server DBA does not want the NetBackup services running as a privileged SQL Server user on the client. |
| **Configuration requirements** | The user account that is used to register credentials must have the SQL Server “sysadmin” role and be a member of the Windows Administrators group.
The NetBackup services can use the Local System logon account. If you want to use a different logon account, that account must also have certain local security privileges.
See “Configuring the NetBackup services for SQL Server backups and restores” on page 25.
See “Configuring local security privileges for SQL Server” on page 26. |
| **Use credentials that are defined locally on the client** | ■ The user account that installed NetBackup is already running as a SQL Server privileged account.
■ The SQL Server DBA does not want to provide credentials to register instances or replicas.
■ The NetBackup administrator does not have access to the SQL Server credentials. |
| **Configuration requirements** | The user account that is used to register credentials must have the SQL Server “sysadmin” role and be a member of the Windows Administrators group.
You must also configure the logon account for the NetBackup services.
See “Configuring the NetBackup services for SQL Server backups and restores” on page 25. |
| **Add to group and register using group credentials** | You want to be able to do one or more of the following:
■ Logically group your instances or replicas in some way.
■ Use a particular tuning parameter to improve the performance for each of the instances or replicas in the group.
■ (Optional) Automatically register new instances or replicas and add them to a group. |
| **Command line** | ■ The DBA does not have access to the NetBackup Administration Console.
■ The NetBackup administrator does not have the credentials for SQL Server.
■ The DBA wants to maintain the SQL Server credentials independently of the backup administrator. |
| | See the section called “Configuring credentials from the command line” on page 23. |
Requirements when you use specific credentials for registration

The following requirements apply when you use the option **Use these specific credentials** for registration:

- The user must have the SQL Server “sysadmin” role.
- The user must be a member of the Windows Administrators group.
- The logon account for the NetBackup Client Service and the NetBackup Legacy Network Service can be either the SQL System administrator or Local System. The services do not have to use the same logon account. See “Configuring the NetBackup services for SQL Server backups and restores” on page 25.
- The logon account for the NetBackup Client Service and the NetBackup Legacy Network Service must have the privileges to **Impersonate a client after authentication** and **Replace a process level token**. See “Configuring local security privileges for SQL Server” on page 26.

Requirements when you use locally defined credentials for registration

When you use the option **Use credentials that are defined locally on the client** for registration, NetBackup uses the credentials for the user that installed NetBackup. The following requirements apply with this option:

- The user must have the SQL Server “sysadmin” role.
- The user must be a member of the Windows Administrators group.
- The logon account for the NetBackup Client Service and the NetBackup Legacy Network Service can be either the SQL System administrator or Local System. The services must use the same logon account. See “Configuring the NetBackup services for SQL Server backups and restores” on page 25.

Configuring credentials from the command line

To register an instance or replica from the command line, the following configuration is required:

- The NetBackup administrator must authorize the `nbsqladm` command for a specific DBA or user on a specific host.

 On the NetBackup master server, use `nbsqladm` to authorize the user:

  ```bash
  nbsqladm [-S master_server] -add_dba host_name user_name
  ```
If you have multiple NICs, authorize the DBA using the private interface name of the SQL Server host.

For a SQL Server cluster, authorize the DBA for each node in the cluster. (Do not authorize a DBA using the virtual name of the SQL Server cluster.) For the -host name provide one of the node names in the SQL Server cluster.

For a SQL Server cluster with multiple NICs, authorize the DBA using the private interface name for each of the nodes in the SQL Server cluster.

- Once a DBA is authorized to use the nbsqladm command, the DBA can register instances with the local credentials (-local_credentials) or other specific credentials (-user name -domain name).

For complete details on the nbsqladm command, see the NetBackup Commands Reference Guide.

Registering instances when SQL Server hosts are clustered or use multiple NICs

When NetBackup discovers a SQL Server cluster, it adds a single entry in the Applications utility. This instance represents all nodes in the cluster. The host name is the virtual name of the SQL Server cluster. When you register this instance NetBackup validates the credentials on the active node. The credentials must be valid for all nodes in the cluster.

When NetBackup discovers a SQL Server host that uses multiple NICs, it adds an entry using the NetBackup client name in the Applications utility. If you installed the NetBackup client using the public interface name, you must configure the NetBackup client name as the private interface name. Then register the instance with its private interface name. For a SQL Server cluster that uses multiple NICs, add and register the instance with the private virtual name of the SQL Server cluster.

See “Configuring the NetBackup client with the private interface name” on page 179.

See the NetBackup for SQL Server Administrator’s Guide or ask your NetBackup administrator for assistance.

Registering Microsoft SQL Server failover cluster instances (FCIs)

NetBackup discovers and displays failover cluster instances (FCIs) under the cluster name and the physical node names. For example, instance FCI is enumerated with both its physical nodes hostvm10 and hostvm11 and with its cluster name sql-fci. Databases that exist for FCIs are also enumerated with the node names and the cluster name. Depending on how you want to protect a database, add credentials to either the cluster name (that are valid for all nodes) or to a physical node name.
Validation of credentials

After you add credentials, NetBackup validates the credentials, marks the instances as registered, and adds the instances to the NetBackup database. NetBackup requests detailed information about the instances or replicas from the NetBackup client and displays it in the Microsoft SQL Server > Instances or Microsoft SQL Server > Availability Group nodes.

For a SQL Server cluster or if an availability group instance is part of SQL Server cluster, NetBackup validates the credentials on the active node. The credentials must be valid for all nodes in the cluster. For a SQL Server availability group, replicas are registered and validated individually. Note that the registered date reflects the date and time the credential was added or updated and does not indicate if the credentials are valid.

See “Troubleshooting credential validation” on page 202.

Configuring the NetBackup services for SQL Server backups and restores

For SQL Server intelligent policies, NetBackup uses the NetBackup Client Service and the NetBackup Legacy Network Service to access the SQL Server when it performs backups and restores.

Note the following requirements for the NetBackup services logon account:

■ The account must have the SQL Server “sysadmin” role.

■ If you want to use Local System for the logon account, apply the SQL Server sysadmin role manually to the NT AUTHORITY\SYSTEM or the BUILTIN\Administrators group.

For VMware backups, different configuration is required for logon account for the services.

See “Configuring the NetBackup services for a VMware backup that protects SQL Server” on page 91.

To configure the NetBackup services for SQL Server backups and restores

1 Log on to the Windows host with the account that has the SQL Server sysadmin role and any necessary local security privileges.

2 In the Windows Services application, open the NetBackup Client Service.
3 Confirm that Local System account or a SQL Server administrator account is configured.

If you use the setting **Use credentials that are defined locally on the client** to register instances, both services must use the same logon account. If you use the setting **Use these specific credentials** to register instances, the services can use the same logon or separate logon accounts.

4 Open the NetBackup Legacy Network Service.

5 Confirm that Local System account or a SQL Server administrator account is configured.

If you use the setting **Use credentials that are defined locally on the client** to register instances, both services must use the same logon account. If you use the setting **Use these specific credentials** to register instances, the services can use the same logon or separate logon accounts.

6 If you selected a different logon account, restart the services.

7 If you selected the option **Use these specific credentials** to register an instance or replica, an account other than Local System requires certain local security privileges.

See “Configuring local security privileges for SQL Server” on page 26.

Configuring local security privileges for SQL Server

If you want to use the option **Use these specific credentials** to register an instance or replica, an account other than Local System requires certain local security privileges. These privileges are necessary since the NetBackup for SQL Server agent logs on as the SQL Server user when it accesses data.

Note: This configuration applies to local security privileges only. For domain-level privileges, contact your domain administrator.

To configure the local security privileges

1 Open the Local Security Policy.

2 Click Local Policies.

3 In the User Rights Assignment, add the account to the following policies:
 - Impersonate a client after authentication
 - Replace a process level token
4 Run the group policy update command (group policy update) for this change to take effect:

```
gpupdate /Force
```

5 If the NetBackup Client Service and the NetBackup Legacy Network Service use this account to log on, restart these services.

6 For a SQL Server cluster, configure the local security privileges on each node in the cluster. For SQL Server availability groups, configure the services on all replicas where you want to run backups.

Registering a SQL Server instance or availability replica

To protect SQL Server with an Intelligent Policy, you must register the SQL Server instances or availability replicas with credentials. Replicas must be registered individually; however, you can use an instance group to all the replicas with the same credentials.

Refer to Table 3-1 to determine the best option for your environment.

To register a SQL Server instance or availability replica

1 In the NetBackup Administration Console, in the left pane, expand **NetBackup Management > Applications > Microsoft SQL Server**.

2 Select the instances or replicas, as follows:

- To select instances, click **All Instances**.
 The right pane displays a list of instances.

- To select replicas, click **Availability Groups > Availability group name**.
 The right pane displays a list of replicas for the availability group.
3 Select the instances or replicas that you want to register. Any instances or replicas that have previously been registered show a date and time in the Registered column.

4 Choose Actions > Register.

5 Select the credentials you want to use.

When you register a cluster instance, NetBackup validates the credentials on the active node. The credentials must be valid for all nodes in the cluster.

See “About credentials used with SQL Server Intelligent Policy” on page 21.

6 Click OK.

NetBackup requests detailed information about the instances or replicas from the NetBackup client and displays it in Applications node.

Registering instances or availability replicas with an instance group

Instance groups provide the following benefits when you create SQL Server policies:

- When you add an instance group to a policy, that single policy can back up many instances or availability replicas.

- You can configure an instance group to automatically add newly discovered instances or replicas to the group, which are then registered on the fly. See “Registering instances or availability replicas automatically” on page 31.

- All the instances or replicas in the group use the same credentials setting. If you select the setting Use these specific credentials, you only need to enter those credentials once.

- In the Applications utility, you can easily see which policies protect which instance groups.
To create an instance group

1. In the NetBackup Administration Console, in the left pane, expand NetBackup Management > Applications > Microsoft SQL Server.
2. Right-click Instance Groups and select New Instance Group.
3. Provide an Instance Group Name.
4. Select the credentials you want to use.
 This user account must have certain privileges. More information is available to help determine which option best applies for your environment.
 See “About credentials used with SQL Server Intelligent Policy” on page 21.
5. Click OK.
6. To add instances or replicas to the group you created, see the following topic.
 See “Adding an instance or availability replica to an instance group” on page 29.

Adding an instance or availability replica to an instance group

Use an instance group to apply the same credentials to all instances or availability replicas in the group.

To add an instance or availability replica to an instance group

1. In the NetBackup Administration Console, in the left pane, expand NetBackup Management > Applications > Microsoft SQL Server.
2. Add instances or replicas, as follows:
 - To add instances, click All Instances. Then select one or more instances that you want to add to an instance group.
 - To add replicas, click Availability Groups > Availability group name. Then select one or more replicas that you want to add to an instance group.

For a SQL Server cluster, NetBackup adds a single entry or one instance to the Applications utility. The host name for that instance is the virtual name of the SQL Server cluster.
3 From the Actions menu, select Register.

4 Click Add to group and register using group credentials.

5 From the Instance Group list, select the instance group to which you want to add the instances or replicas.

6 Click OK.

 NetBackup requests detailed information about the instances or replicas from the NetBackup client and displays it in Applications node.

 If you previously registered an instance or replica, its credentials are automatically changed to the group credentials setting.

Validating instance group credentials

Credentials for an instance group are not validated when an instance or a replica is registered automatically. You should periodically validate the credentials for the objects in the group. For a cluster instance, note that NetBackup validates the credentials on the active node. The credentials must be valid for all nodes in the cluster.
To validate group credentials
1 Select the instance group.
2 Choose Actions > Properties.
3 Click Validate.

NetBackup requests detailed information about the instances or replicas from the NetBackup client and displays it in Applications node.

Registering instances or availability replicas automatically

With automatic registration, NetBackup adds newly discovered instances or availability replicas to the instance group that you choose and automatically registers them with group credentials. Only one instance group can be configured for automatic registration.

Note: Any instances or replicas that were discovered before this instance group was created are not automatically added to the group.

To register instances or availability replicas automatically
1 In the NetBackup Administration Console, in the left pane, expand NetBackup Management > Applications.
2 If necessary, create an instance group.
3 Click Microsoft SQL Server and choose Actions > Auto Registration.
4 Select Automatically register newly discovered instances.
From the Instance Group list, select the instance group to which you want to add newly discovered instances or replicas.

Click OK.

To validate the credentials for the instances or replicas in the group, see the following topic.

See “Validating instance group credentials” on page 30.

Authorizing a DBA to register instances or availability replicas with the nbsqladm command

The NetBackup administrator can authorize a DBA to use the nbsqladm to register instances or replicas if the DBA wants to manage SQL Server credentials independently. From the master server the NetBackup administrator can control the list of users and hosts that can run nbsqladm on the NetBackup client.

For example, the NetBackup administrator can authorize the user john_smith on host winserver.domain.com with the following command:

```
nbsqladm -add_dba winserver.domain.com john_smith
```

From the NetBackup client, winserver.domain.com, john_smith can register and manage instances or replicas. For example, the DBA can register an instance with local credentials as follows:

```
nbsqladm -S NBUmaster1 -register_instance hr_city1 - host winserver.domain.com -local_credentials
```

More information on the nbsqladm command is available. See the NetBackup Commands Guide.

Deleting SQL Server objects from the Applications utility

You cannot delete a SQL Server object (for example, an instance) that is part of a policy. First, delete the object from the Instances and Databases tab in the policy.

To delete SQL Server objects from the Applications utility

1 Expand NetBackup Management > Applications > Microsoft SQL Server.
2 Choose from the following:
 ■ Select the Availability Groups node. In the right pane, select the availability group that you want to delete.
Expand **Availability Groups** and select the availability group. In the right pane, select the replica that you want to delete.

Select the **Instance Groups** node. In the right pane, select the availability group that you want to delete.

Select the **Instances** node. In the right pane, select the availability group that you want to delete.

3 Select **Actions > Delete**.

Manually add a SQL Server instance

Newly discovered SQL Server instances on clients are automatically added to the NetBackup database. However, you may not want to wait for the discovery service to discover a new instance. In this case you can add an instance manually.

To manually add a SQL Server instance

1 In the NetBackup Administration Console, in the left pane, expand **NetBackup Management > Applications > Microsoft SQL Server**.

2 Right-click **All Instances** and select **New instance**.

3 Provide the **Host** name where the instance resides and the **Instance name**.

 - For a SQL Server cluster or multi-NIC environment, add one entry to the Applications utility.

 - For a cluster, the host name is the virtual name of the SQL Server cluster. You do not need to add each node in the cluster.

 - For a multi-NIC environment, the host name is the private interface name of the SQL Server host or of the virtual SQL Server.

 - For a failover cluster instance, enter the virtual name of the SQL Server cluster. NetBackup enumerates the FCI under the physical node names and the cluster name.
4 Click **Edit** to provide credentials and register the instance.

See "Registering a SQL Server instance or availability replica" on page 27.

You may omit credentials when you add a new instance to the NetBackup database. The instance is marked as unregistered and the **Registered** column is empty.

Deactivating or activating an instance

You can make an instance inactive in NetBackup so it is excluded from a backup. For example, if the instance is under maintenance.

To deactivate an instance

1. Expand **NetBackup Management > Applications > Microsoft SQL Server**.
2. Select the **Instances** node.
3. In the right pane, select the instance that you want to deactivate.
4. From the **Actions** menu, select **Deactivate**.

To activate an instance

1. Expand **NetBackup Management > Applications > Microsoft SQL Server**.
2. Select the **Instances** node.
3. In the right pane, select the instance that you want to activate.
4. From the **Actions** menu, select **Activate**.
Cleaning up instances

This option lets you configure NetBackup to automatically clear orphaned instances from the Applications utility. Orphaned instances are the instances that were discovered at one time but were never registered.

To enable instance cleanup

1. Expand NetBackup Management > Applications > Microsoft SQL Server.
2. Select the Instances node.
3. Select Actions > Instance cleanup.
4. Select Clean up after.
5. Select how often (days) that you want NetBackup to perform instance cleanup.
6. Click OK.
Configuring backups with SQL Server Intelligent Policy

This chapter includes the following topics:

- About SQL Server Intelligent Policies
- Creating a SQL Server Intelligent Policy
- About policy attributes
- About schedule properties
- Schedule backup types for SQL Server Intelligent Policies
- Adding instances to a policy
- Adding databases to a policy
- Adding filegroups or files to the backup selections list
- Manually adding files or filegroups to the backup selections list
- Adding instance groups to a backup policy
- About tuning parameters for SQL Server backups
- Backing up read-only filegroups
- Backing up read-write filegroups
About SQL Server Intelligent Policies

A SQL Server Intelligent Policy lets you create a single policy to protect multiple SQL Server instances or the databases in an instance. These instances can be spread over multiple clients. You can select SQL Server instances for a policy from a list of instances that are automatically discovered in the NetBackup environment.

The SQL Server Intelligent Policy includes the following criteria:

- Storage unit and media to use
- Policy attributes
- Backup schedules: Full, differential-incremental, transaction log
- The SQL Server objects to back up.
 Different policies are required to back up instances, instance groups, or availability groups. You cannot mix instances, instance groups, and availability groups (AGs). For example, if you create a policy with instances or databases and later select the Protect instance groups option, the instances or databases are deleted from the policy.
- Backup selections: Whole database, filegroups, or files

Creating a SQL Server Intelligent Policy

Before you configure an intelligent policy ensure that you have:

- Registered the SQL Server instances that you want to protect.
 See “Registering a SQL Server instance or availability replica” on page 27.
- For SQL Server clusters or availability groups, you configured the mappings for distributed application restores. Also, you reviewed the auto-discovered mappings for the hosts in your environment.
 See “Configuring mappings for restores of a distributed application, cluster, or virtual machine” on page 56.
 See “Reviewing the auto-discovered mappings in Host Management” on page 57.

To create a NetBackup for SQL Server Intelligent Policy

1. Log on to the master server as administrator (Windows) or root (UNIX).
2. Start the NetBackup Administration Console.
4. Select Actions > New > Policy.
5. Type a unique name for the new policy and click OK.
6. In the Policy type list, select MS-SQL-Server.
7 Complete the entries on the **Attributes** tab.

See “About policy attributes” on page 38.

8 Add other policy information as follows:

- Choose to protect instances or instance groups.
 - If you choose the instances option, you can select either individual instances or databases.
 - See “Adding instances to a policy” on page 42.
 - See “Adding databases to a policy” on page 43.
 - See “Adding instance groups to a backup policy” on page 48.

- Add schedules.
 - See “About schedule properties” on page 39.

- (Optional) Select the specific filegroups or files that you want to back up.
 - By default, NetBackup backs up an entire database.
 - See “Adding filegroups or files to the backup selections list” on page 46.

- (Optional) Make changes to any tuning parameters.
 - See “About tuning parameters for SQL Server backups” on page 49.

9 When you have completed the policy configuration, click **OK**.

In the **Applications** utility, the properties for an instance, replica, or instance group indicate the name of any Intelligent Policies that protect those objects.

About policy attributes

With a few exceptions, NetBackup manages the policy attributes set for a database backup like a file system backup. Other policy attributes vary according to your specific backup strategy and system configuration.

Table 4-1 describes some of the policy attributes available for a NetBackup for SQL Server policy. For more information on policy attributes, see the NetBackup Administrator’s Guide, Volume I.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy type</td>
<td>Determines the types of clients that can be backed up with the policy. For SQL Server databases, select the policy type MS-SQL-Server.</td>
</tr>
<tr>
<td>Limit jobs per policy</td>
<td>Sets the maximum number of instances that NetBackup can back up concurrently with this policy.</td>
</tr>
</tbody>
</table>
Table 4-1
Policy attribute for NetBackup for SQL Server policies (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compress</td>
<td>Enables the compression of backups by NetBackup. If you enable NetBackup compression, do not enable SQL Server compression.</td>
</tr>
<tr>
<td></td>
<td>For more information on advantages and disadvantages of compression, see the NetBackup Administrator’s Guide, Volume I.</td>
</tr>
<tr>
<td>Keyword phrase</td>
<td>Although you can create a keyword phrase for MS-SQL-Server policies, NetBackup for SQL Server does not record this information with the backup image.</td>
</tr>
<tr>
<td>Snapshot Client and</td>
<td>This group contains the options that enable backups with Snapshot Client and Replication Director.</td>
</tr>
<tr>
<td>Replication Director</td>
<td>See “About NetBackup Snapshot Client for SQL Server” on page 96.</td>
</tr>
<tr>
<td></td>
<td>See “Configuring a VMware policy to protect SQL Server using Replication Director to manage snapshot replication” on page 94.</td>
</tr>
</tbody>
</table>

About schedule properties

This topic describes how to configure certain schedule properties for SQL Server Intelligent Policies. Other schedule properties vary according to your specific backup strategy and system configuration. Additional information about other schedule properties is available in the [NetBackup Administrator’s Guide, Volume I](#).

Table 4-2 describes how the schedule properties affect a SQL Server Intelligent Policy.

Table 4-2
Description of schedule properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of backup</td>
<td>Specifies the type of backup that this schedule can control. The selection list shows only the backup types that apply to the policy you want to configure.</td>
</tr>
<tr>
<td></td>
<td>See “Schedule backup types for SQL Server Intelligent Policies” on page 40.</td>
</tr>
</tbody>
</table>
Schedule backup types for SQL Server Intelligent Policies

The **Type of backup** attribute specifies the type of backup that the schedule controls. Refer to the following guidelines when you configure schedules:

Table 4-2 Description of schedule properties (continued)

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule type</td>
<td>You can schedule a backup in one of the following ways:</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>Frequency specifies the period of time that can elapse until the next backup operation begins on this schedule. For example, assume that the frequency is 7 days and a successful backup occurs on Wednesday. The next full backup does not occur until the following Wednesday. Typically, incremental backups have a shorter frequency than full backups. The frequency can be hours, days, or weeks. For transaction log backups, the frequency can also be minutes.</td>
</tr>
<tr>
<td></td>
<td>Calendar</td>
</tr>
<tr>
<td></td>
<td>The Calendar option lets you schedule the backup operations that are based on specific dates, recurring week days, or recurring days of the month.</td>
</tr>
<tr>
<td>Retention</td>
<td>Specifies a retention period to keep backup copies before they are deleted. The retention period for a schedule controls how long NetBackup keeps records of when scheduled backups occurred. Set the time period to retain at least two full backups of your database. In this way, if one full backup is lost, you have another full backup to restore. The type of schedule you select affects the retention period as follows:</td>
</tr>
<tr>
<td></td>
<td>Frequency-based scheduling</td>
</tr>
<tr>
<td></td>
<td>Set a retention period that is longer than the frequency setting for the schedule. For example, if the frequency setting is set to one week, set the retention period to be more than one week. When NetBackup expires a backup image it does not notify SQL Server. Use SQL Server to periodically delete expired backup sets from the SQL Server repository.</td>
</tr>
<tr>
<td></td>
<td>Calendar-based scheduling</td>
</tr>
<tr>
<td></td>
<td>The retention period setting is not significant for calendar-based scheduling.</td>
</tr>
<tr>
<td>Media multiplexing</td>
<td>Multiplexing is useful if you have many simultaneous backups using the same tape drive. However, it can interfere with SQL Server recovery due to how SQL Server requests streams during restore. In most cases, Veritas does not recommend multiplexing multiple SQL Server streams from the same backup to a single tape.</td>
</tr>
<tr>
<td></td>
<td>See "Configuring multiplexed backups of SQL Server" on page 211.</td>
</tr>
</tbody>
</table>
The backup operation is skipped for a specific database if the database recovery model is not supported for the selected backup type. See the section called “Schedules and unsupported recovery models” on page 42.

If a differential backup runs and a full backup do not already exist for the database or filegroup, NetBackup can convert the backup to a full backup. Similarly, NetBackup can convert transaction log backups if a full backup does not already exist for the database.

See “About tuning parameters for SQL Server backups” on page 49.

Table 4-3 shows the backup types that you can specify.

<table>
<thead>
<tr>
<th>Backup type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Backup</td>
<td>A complete backup of the database that contains all of the data files and the log file. (Note that a full backup does not truncate the transaction log.)</td>
</tr>
<tr>
<td>Differential Incremental Backup</td>
<td>A backup of the changed blocks since the last full backup. If you configure a differential incremental backup, you must also configure a full backup.</td>
</tr>
<tr>
<td>Transaction Log backup</td>
<td>Backs up the transactions that have occurred since the last transaction log backup. After a successful backup, the log is cleared so that new transactions can be written to the file. A transaction log backup can only be performed against a database that is configured to run in the full recovery model. You can choose to turn off truncation in the Microsoft SQL Server tab. See the section called “Configuring high-frequency transaction log backups” on page 41. If you want to configure transaction log backups to run at a high-frequency, review the recommendations. See “Configuring the number of jobs allowed for backup operations” on page 62.</td>
</tr>
</tbody>
</table>

Configuring high-frequency transaction log backups

Consider the following when you configure transaction log backups:

- Create a dedicated storage unit for transaction log backup images.
- If a policy includes transaction log backups along with full or differential backups, the transaction log backups run at the scheduled time and frequency even when full or differential backups are active.
- Configure the number of jobs that are allowed for backup operations. See “Configuring the number of jobs allowed for backup operations” on page 62.
Schedules and unsupported recovery models

NetBackup skips database backups in certain situations. The first case is if the database recovery model for a database does not support the selected backup type. For example, the simple recovery model does not allow transaction log backups. The second case is for the master database, which is skipped for any backups other than full database backups. To back up the master database, you must have a full backup schedule and select **Whole database** in the backup selections. Specifically, the master database is skipped for the following types of backups: differential, filegroup, filegroup differential, file, and transaction log.

In these cases, NetBackup skips the backup of the database, but continues with the backup of the other databases that are protected by the policy. The backup completes with a status 0 and the job details indicate that the database was skipped.

Example backup schedules for a policy

Table 4-4 shows an example of the schedules you can create for a single SQL Server Intelligent Policy.

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Frequency</th>
<th>Backup window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Backup</td>
<td>Weekly</td>
<td>Sunday</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 hours</td>
</tr>
<tr>
<td>Differential Incremental Backup</td>
<td>Daily</td>
<td>Monday - Saturday</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 hours in the evening</td>
</tr>
<tr>
<td>Transaction Log backup</td>
<td>Per your RTO and RPO</td>
<td>Sunday - Saturday</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 hours</td>
</tr>
</tbody>
</table>

Adding instances to a policy

This topic describes how to add instances to a policy when you choose the **Protect instances** option. You can also add individual databases to the same policy.

See "Adding databases to a policy" on page 43.

To add instances a policy

1. On the **Instances and Databases** tab, click **Protect instances**.
2. Click **New**.

 All instances that you registered are displayed.
3 In the left pane, select the **Instances** node.

4 In the right pane, check the check box next to each instance that you want to add to the list.

![Select Instances and Databases](image1)

Note: Note that for a SQL Server cluster, there is only one entry that is displayed for the cluster. This entry represents all nodes in the cluster; the host is the virtual name of the SQL Server cluster.

![Select Instances and Databases](image2)

5 Click **OK**.

The objects you select in the backup selections list apply only to the instances or databases that you add to the list on this tab.

![Backup Selections](image3)

Adding databases to a policy

This topic describes how to add databases to a policy when you choose the **Protect instances** option. You can also add instances to the same policy.

See “Adding instances to a policy” on page 42.
To add databases to a policy

1. On the **Instances and Databases** tab, click **Protect instances**.
2. Click **New**.
 All instances that you registered are displayed.
3. In the left pane, expand the **Databases** node and select the instance that contains the databases that you want to protect.
4 In the right pane, select the check box next to each database that you want to add to the list.

When you select individual databases, you must manually add any new databases in your environment to a policy. In this case, NetBackup does not dynamically create a list of databases at run-time.

For databases that are hosted on a SQL Server cluster, the **Host Name** represents the virtual name of the SQL Server. (See the following figure.)

5 Click **OK**.

The objects you select in the backup selections list apply only to the instances or databases that you add to the list on this tab.
Adding filegroups or files to the backup selections list

This topic describes how to browse for the filegroups or the files that you want to add to the backup selections list.

To add filegroups or files to the backup selections list

1. Open the policy you want to edit or create a policy.
2. Select Filegroups or Files.
3. Click Browse.
4. In the left pane, select an instance to view the filegroups or files that it contains.
5 In the right pane select the filegroups or files.

6 Click **OK** to add the filegroups or files that you selected to the backup selections list.

Note: When you add a filegroup or file to the backup selections list, NetBackup backs up that object for all databases in the policy that contain a filegroup or file with that name.
Manually adding files or filegroups to the backup selections list

This topic describes how to manually add SQL Server database filegroups or files to the backup selections list.

To manually add files or filegroups to the backup selections list

1. Open the policy you want to edit or create a new policy.
2. Click the Backup Selections tab.
3. Select one of the SQL Server object types to back up:
 - Filegroups
 - Files
4. Click New.
5. Type the name of a filegroup or file and then click Add.
 Repeat this step to add any other filegroups or files.
6. Click OK > OK.

Adding instance groups to a backup policy

This topic describes how to add instance groups to a SQL Server Intelligent Policy.

To add instance groups to a SQL Server Intelligent policy

1. Open the policy you want to edit or create a new policy.
2. On the Instances and Databases tab, click Protect instance groups.
3. Click New.
 All instance groups that you registered are displayed.
4. Select the instance groups you want to add and click OK.

The list of instance groups that is displayed here controls the instances you can browse and select from when you create the backup selections list.

To see a list of all the instances in the group, select the instance group and click Preview Instances.
About tuning parameters for SQL Server backups

The Microsoft SQL Server tab contains the tuning parameters that can improve the performance of your backups. These settings, and other factors that affect performance, are discussed in this topic.

See “About NetBackup for SQL performance factors” on page 196.

Caution: Do not enable multiplexing if the policy is also configured with multiple stripes. Restores fail when both multiplexing and multiple stripes are configured for a backup policy.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of backup stripes</td>
<td>This option divides the backup operation into multiple concurrent streams. A stream corresponds to a job in the activity monitor. For example, if the value is 3, each database is backed up using three jobs. This configuration applies in any situation in which SQL Server dumps data faster than your tape drive is capable of writing. The default value for this option is 1. Range is 1–32. See “Configuring multistriped backups of SQL Server” on page 53.</td>
</tr>
<tr>
<td>Client buffers per stripe</td>
<td>(Stream-based backups only) This option affects buffer space availability. NetBackup uses this parameter to decide how many buffers to allocate for reading or writing each data stream during a backup operation. By allocating a greater number of buffers, you can affect how quickly NetBackup can send data to the NetBackup master server. The default value for this option is 2, which allows double buffering. You may get slightly better performance by increasing this value to a higher value. Range is 1–32.</td>
</tr>
<tr>
<td>Maximum transfer size</td>
<td>(Stream-based backups only) This option is the buffer size used by SQL Server for reading and writing backup images. Generally, you can get better SQL Server performance by using a larger value. This option can be set for each backup operation. Calculated as 64 KB * 2^MAX_TRANSFER_SIZE. It ranges in size from 64 KB to 4 MB. The default is 4 MB.</td>
</tr>
<tr>
<td>Backup block size</td>
<td>This option applies to stream-based backups only. Sets the incremental size that SQL Server uses for reading and writing backup images and can be set for each backup operation. Calculated as 512 bytes * 2^BLOCK_SIZE. The value for this option ranges from 0.5 KB to 64 KB. The default is 64 KB.</td>
</tr>
</tbody>
</table>
Table 4-5 Tuning parameters for SQL Server backups (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Parallel backup operations** | This option is the number of backup operations to start simultaneously, per database instance. Range is 1–32. The default is 1.
You may need to configure other options when you configure two or more parallel backup operations.
See “Configuring the number of jobs allowed for backup operations” on page 62. |
| **Microsoft SQL Server checksum** | Choose one of the following options for SQL Server backup checksums:
- None. Disables backup checksums.
- To verify the checksums before the backup, choose one of the following options. Note that these options impose a performance penalty on a backup or restore operation.
 - Continue on error. If the backup encounters a verification error, the backup continues.
 - Fail on error. If the backup encounters a verification error, the backup stops. |
| **Use Microsoft SQL Server compression** | Enable this option to use SQL Server to compress the backup image. If you enable SQL Server compression, do not enable NetBackup compression.
SQL Server compression is not supported for snapshot backups. |
| **Skip unavailable (offline, restoring, etc.) databases** | NetBackup skips any database with a status that prevents NetBackup from successfully backing up the database. These statuses include offline, restoring, recovering, and emergency mode, etc.
NetBackup skips the backup of the unavailable database, but continues with the backup of the other databases that the policy includes. The backup completes with a status 0 and the job details indicate that the database was skipped.
See “Schedule backup types for SQL Server Intelligent Policies” on page 40. |
| **Copy-only backup** | This option allows SQL Server to create an out-of-band backup so that it does not interfere with the normal backup sequence. The default value is cleared except for full database Instant Recovery backups.
See “Using copy-only snapshot backups to affect how differentials are based” on page 104. |
| **Skip read-only file groups** | This option excludes any filegroups that are read-only from the backup. The resulting backup is a partial image because the image does not contain all filegroups. The partial image contains data from the read-write filegroups and data from the primary filegroup.
This option applies only to the Whole database backup selection.
See “Backing up read-only filegroups” on page 53.
See “Backing up read-write filegroups” on page 54. |
Table 4-5 Tuning parameters for SQL Server backups (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Convert differential backups to full (when no full exists)** | If no previous full backup exists for the database or filegroup, then NetBackup converts a differential backup to a full backup.
The agent checks to determine if a full backup exists for each database. If no previous full backup exists, a differential backup is converted to a full as follows:
■ If you select a database for a differential backup, the backup is converted to a full database backup.
If the **Skip read-only file groups** option is selected the backup is converted to a full read/write filegroup backup.
■ If you select a filegroup for a differential backup, NetBackup does the following:
■ If the filegroup is the default database filegroup, NetBackup converts the backup to a full filegroup backup.
■ If the filegroup is a secondary filegroup and a backup of the primary filegroup does not exist, NetBackup converts the backup to a partial full database backup. This backup contains the selected filegroup and default filegroup.
■ If the filegroup is a secondary filegroup and a backup of the primary filegroup does exist, NetBackup converts the backup to a full filegroup backup of the selected filegroup.
■ For snapshot backup policies, you must create a **Full backup** schedule for NetBackup to successfully convert differential backups to full backups.
Note: NetBackup only converts a differential backup if a full backup was never performed on the database or filegroup. If a full backup does not exist in the NetBackup catalog but SQL Server detects an existing full LSN, NetBackup performs a differential backup and not a full. In this situation, you can restore the full backup with native tools and any differentials with the NetBackup MS SQL Client. Or, if you expired the backup in NetBackup, you can import the full backups into the NetBackup catalog. Then you can restore both the full and the differential backups with the NetBackup MS SQL Client. |
| **Truncate logs after backup** | This option backs up the transaction log and removes the inactive part of the transaction log. This option is enabled by default. |
Table 4-5 Tuning parameters for SQL Server backups (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convert log backups to full (when no full exists)</td>
<td>If no previous full backup exists for the database, then NetBackup converts a transaction backup to a full backup. This option also detects if a full recovery database was switched to the simple recovery model and back to the full recovery model. In this scenario, the log chain is broken and SQL Server requires a differential backup before a subsequent log backup can be created. If NetBackup detects this situation, the backup is converted to a differential database backup. Note: NetBackup only converts a transaction log backup if a full backup was never performed on the database. If a full backup does not exist in the NetBackup catalog but SQL Server detects an existing full LSN, NetBackup performs a transaction log backup and not a full. In this situation, you can restore the full backup with native tools and any differentials and log backups with the NetBackup MS SQL Client. Or, if the backup was expired by NetBackup, you can import the full backups into the NetBackup catalog. Then you can restore the full, differential, and log backups with the NetBackup MS SQL Client.</td>
</tr>
</tbody>
</table>
| Availability Database Backup Preference | The selection on the Select Instances and Databases tab determines the options you can select in this list. None and Skip Availability Databases are only available for instances and instance groups.
- **None**
 Perform the backup on the specified instance.
- **Protect primary replica**
 Backups always occur on the primary replica. This option applies to availability replicas and to instances that have both standard databases and availability databases.
- **Protect preferred replica**
 Honors your SQL Server backup preferences. These preferences include the preferred replica, backup priority, and excluded replicas. Note that NetBackup initiates a backup job on each replica. The backup is skipped on any replica that isn't the intended backup source. This option applies to availability replicas and to instances that have both standard databases and availability databases,
- **Skip Availability Databases**
 Skips any availability databases on the instance. Use this option to protect only the databases that are not part of an availability group when the policy includes any instances that contain both standalone databases and availability databases. |
| VDI Timeout (seconds) | Determines the timeout interval for SQL Server Virtual Device Interface. The selected interval is applied to backups and restores of databases and of transaction logs. The default value for backups is 300. The default value for restores is 600. Range is 300–2147483647. |
Configuring multistriped backups of SQL Server

SQL Server supports backups of databases through multiple data streams, which are called stripes. NetBackup stores each stripe as a separate image. The purpose of this feature is to speed up the rate of data transmission with the use of multiple tape devices.

Backup images can be written to more tapes than available drives. When you restore this type of backup image, in the restore batch file indicate the number of drives that are available.

See “Restoring multistreamed SQL Server backups” on page 83.

Caution: Do not enable multiplexing for a schedule that is also configured to backup with multiple stripes. Restores fail when multiplexing is enabled for a schedule that uses more than one stripe.

Configure the following to create a multistriped backup:

- In the backup policy, select the number of **Stripes** you want to use.
 For a SQL Server Intelligent policy, configure this setting on the **Microsoft SQL Server** tab. For legacy SQL Server policies, configure the **Stripes** setting when you create the backup batch file.

- In the schedules for your policy, set **Media multiplexing** to 1 to disable multiplexing.
 For legacy SQL Server policies, disable multiplexing in the “Application Backup” schedule. When you disable multiplexing, during a restore all streams are made available simultaneously so the restore operations are successful.

- Ensure that the storage unit has as many drives as you want to have stripes.

- Configure backup schedules so that enough drives are available at the time you want to perform striped backups.

Backing up read-only filegroups

When you separate read-only and read-write filegroups in your backup strategy, you can reduce total media usage and the total time you spend on backup operations. To back up read-only filegroups you must first create a separate policy for this type of backup. You can also verify that all read-only filegroups are backed up.

See “Viewing SQL Server read-only backup sets” on page 170.
To back up read-only filegroups

1. Create a new policy to protect read-only filegroups.
2. Select the policy attributes.
 See “About policy attributes” on page 38.
3. Create a **Full** backup schedule and set the **Retention** level to **Infinite**.
 All read-only filegroups must be included in some combination of full, or individual filegroup and file backups. You only need to perform this backup one time. See “About schedule properties” on page 39.
4. Choose to protect instances or instance groups.
 See “Adding instances to a policy” on page 42.
 See “Adding instance groups to a backup policy” on page 48.
5. On the **Backup Selections** tab, select **Filegroups**.
 See “Adding filegroups or files to the backup selections list” on page 46.
6. Select the filegroups you want to back up.
7. When you complete the policy configuration, click **OK**.
8. Back up the read-only filegroups.
9. If necessary, confirm all read-only groups are backed up by viewing the read-only backup set.

Back up read-write filegroups

When you separate read-only and read-write filegroups in your backup strategy, you can reduce total media usage and the total time you spend on backup operations. More information is available on backing up read-only filegroups.

See “Backing up read-only filegroups” on page 53.

Note: Immediately back up any filegroup when you change it from read-write to read-only.

To back up read-write filegroups

1. Create a new policy or open the policy you want to configure.
2. Select the policy attributes.
 See “About policy attributes” on page 38.
3 Create a **Full Backup**, **Differential Incremental Backup**, and **Transaction Log backup** schedule.
 See “About schedule properties” on page 39.

4 On the **Instances and Databases** tab, choose to **Protect instances**.

5 Add the instances or the databases that contain the read-write filegroups.
 See “Adding instances to a policy” on page 42.

6 On the **Backup Selections** tab, select **Whole database**.

7 Click the **Microsoft SQL Server** tab.

8 Check **Skip read-only file groups**.
 See “About tuning parameters for SQL Server backups” on page 49.

9 When you have completed the policy configuration, click **OK**.
Configuring host properties and job settings

This chapter includes the following topics:

- Configuring mappings for restores of a distributed application, cluster, or virtual machine
- Reviewing the auto-discovered mappings in Host Management
- Configuring the number of jobs allowed for backup operations
- Configuring the Maximum jobs per client setting

Configuring mappings for restores of a distributed application, cluster, or virtual machine

This configuration is required for restores of a SQL Server cluster or a SQL Server availability group.

To configure mappings for restores of a distributed application, cluster, or virtual machine

1. On the master server, open the NetBackup Administration Console.
3. In the right pane, double-click on the master server.
4. Select Distributed Application Restore Mapping.
5. Click Add.
6. Provide the name of the application host and the name of the component host.

See Example entries for SQL Server
Example entries for SQL Server

Table 5-1

<table>
<thead>
<tr>
<th>Environment</th>
<th>Application host</th>
<th>Component host</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCI (cluster with two nodes)</td>
<td>Virtual name of the SQL Server cluster</td>
<td>Physical name of Node 1</td>
</tr>
<tr>
<td></td>
<td>Virtual name of the SQL Server cluster</td>
<td>Physical name of Node 2</td>
</tr>
<tr>
<td>Advanced or basic availability group (primary and secondary)</td>
<td>WSFC name</td>
<td>Primary replica name</td>
</tr>
<tr>
<td></td>
<td>WSFC name</td>
<td>Secondary replica name</td>
</tr>
<tr>
<td>Advanced or basic availability group with an FCI (primary FCI and secondary FCI)</td>
<td>WSFC name</td>
<td>Primary replica FCI name</td>
</tr>
<tr>
<td></td>
<td>WSFC name</td>
<td>Secondary replica FCI name</td>
</tr>
<tr>
<td></td>
<td>Virtual name of the SQL Server cluster</td>
<td>Physical name of Node 1</td>
</tr>
<tr>
<td></td>
<td>Virtual name of the SQL Server cluster</td>
<td>Physical name of Node 2</td>
</tr>
<tr>
<td>VMware</td>
<td>VM display name, VM BIOS UUID, or VM DNS name (Primary VM identifier other than VM hostname)</td>
<td>Host name of the VM</td>
</tr>
</tbody>
</table>

Reviewing the auto-discovered mappings in Host Management

In certain scenarios, a NetBackup host shares a particular name with other hosts or has a name that is associated with a cluster. To successfully perform backups and restores with NetBackup for SQL Server, you must approve each valid **Auto-Discovered Mapping** that NetBackup discovers in your environment. These mappings appear in the Host Management properties on the master server. You can also use the `nbhostmgmt` command to manage the mappings. See the *NetBackup Administrator's Guide, Volume I* for more details on Host Management properties.

Examples of the configurations that have multiple host names include:
A host is associated with its fully qualified domain name (FQDN) and its short name or its IP address.

If the SQL Server is clustered, the host is associated with its node name and the virtual name of the cluster.

Auto-discovered mappings for a cluster

In a SQL Server cluster environment, you must map the node names to the virtual name of the cluster if the following apply:

- If the backup policy includes the cluster name (or virtual name)
- If the NetBackup client is installed on more than one node in the cluster
 - If the NetBackup Client is only installed on one node, then no mapping is necessary.

To approve the auto-discovered mappings for a cluster

1. In the NetBackup Administration Console, expand **Security Management > Host Management**.
2. At the bottom of the **Hosts** pane, click the **Mappings for Approval** tab.

The list displays the hosts in your environment and the mappings or additional host names that NetBackup discovered for those hosts. A host has one entry for each mapping or name that is associated with it.

For example, for a cluster with hosts `client01.lab04.com` and `client02.lab04.com`, you may see the following entries:

<table>
<thead>
<tr>
<th>Host</th>
<th>Auto-discovered Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>client01.lab04.com</td>
<td>client01</td>
</tr>
<tr>
<td>client01.lab04.com</td>
<td>clustername</td>
</tr>
<tr>
<td>client01.lab04.com</td>
<td>clustername.lab04.com</td>
</tr>
<tr>
<td>client02.lab04.com</td>
<td>client02</td>
</tr>
<tr>
<td>client02.lab04.com</td>
<td>clustername</td>
</tr>
<tr>
<td>client02.lab04.com</td>
<td>clustername.lab04.com</td>
</tr>
</tbody>
</table>
3. If a mapping is valid, right-click on a host entry and click Approve.

For example, if the following mappings are valid for client01.lab04.com, then you approve them.

<table>
<thead>
<tr>
<th>Auto-discovered Mapping</th>
<th>Valid name for</th>
</tr>
</thead>
<tbody>
<tr>
<td>client01</td>
<td>The short name of the client</td>
</tr>
<tr>
<td>clustername</td>
<td>The virtual name of the cluster</td>
</tr>
<tr>
<td>clustername.lab04.com</td>
<td>The FQDN of the virtual name of the cluster</td>
</tr>
</tbody>
</table>

4. When you finish approving the valid mappings for the hosts, click on the Hosts tab at the bottom of the Hosts pane.

For hosts client01.lab04.com and client02.lab04.com, you see Mapped Host Names/IP Addresses that are similar to the following:

<table>
<thead>
<tr>
<th>Host</th>
<th>Mapped Host Names/IP Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>client01.lab04.com</td>
<td>client01.lab04.com, client01, clustername, clustername.lab04.com</td>
</tr>
<tr>
<td>client02.lab04.com</td>
<td>client02.lab04.com, client02, clustername, clustername.lab04.com</td>
</tr>
</tbody>
</table>

5. If you need to add a mapping that NetBackup did not automatically discover, you can add it manually.

Click on the Hosts tab, then right-click in the Hosts pane and click Add Shared or Cluster Mappings. For example, provide the name of the virtual name of the cluster. Then click Select Hosts to choose the node names in the cluster to which you want to map that virtual name.

In Table 5-2, FCI is a SQL Server failover cluster instance. WSFC is Windows Server Failover Cluster.

Table 5-2 Example mapped host names for SQL Server environments

<table>
<thead>
<tr>
<th>Environment</th>
<th>Host</th>
<th>Mapped Host Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCI (cluster with two nodes)</td>
<td>Physical name of Node 1</td>
<td>Virtual name of the SQL Server cluster</td>
</tr>
<tr>
<td></td>
<td>Physical name of Node 2</td>
<td>Virtual name of the SQL Server cluster</td>
</tr>
</tbody>
</table>
Table 5-2 Example mapped host names for SQL Server environments
(continued)

<table>
<thead>
<tr>
<th>Environment</th>
<th>Host</th>
<th>Mapped Host Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic or advanced availability group (primary and secondary)</td>
<td>Primary name</td>
<td>WSFC name</td>
</tr>
<tr>
<td></td>
<td>Secondary name</td>
<td>WSFC name</td>
</tr>
<tr>
<td>Basic or advanced availability group, with an FCI (primary FCI and secondary FCI)</td>
<td>Primary FCI name</td>
<td>WSFC name</td>
</tr>
<tr>
<td></td>
<td>Secondary FCI name</td>
<td>WSFC name</td>
</tr>
<tr>
<td></td>
<td>Physical name of Node 1</td>
<td>Virtual name of the SQL Server cluster</td>
</tr>
<tr>
<td></td>
<td>Physical name of Node 2</td>
<td>Virtual name of the SQL Server cluster</td>
</tr>
</tbody>
</table>

Auto-discovered mappings for a SQL Server cluster in a multiple NIC environment

If you have a SQL Server cluster in a multi-NIC environment, you need to approve each valid **Auto-Discovered Mapping** for the hosts in that environment. You must map the virtual name of the SQL Server cluster on the private network to the private name of each SQL Server cluster node.
To approve the auto-discovered mappings for a SQL Server cluster in a multiple NIC environment

1 In the NetBackup Administration Console, expand **Security Management > Host Management**.

2 At the bottom of the **Hosts** pane, click the **Mappings for Approval** tab.

 The list displays the hosts in your environment and the mappings or additional host names that NetBackup discovered for those hosts. A host has one entry for each mapping or name that is associated with it.

 For example, for a cluster in a multi-NIC environment with hosts `client01-bk.lab04.com` and `client02-bk.lab04.com`, you may see the following entries:

<table>
<thead>
<tr>
<th>Host</th>
<th>Auto-discovered Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>client01-bk.lab04.com</td>
<td>clusternname-bk.lab04.com</td>
</tr>
<tr>
<td>client02-bk.lab04.com</td>
<td>clusternname-bk.lab04.com</td>
</tr>
</tbody>
</table>

3 If a mapping is valid, right-click on a host entry and click **Approve**.

 For example, if following mapping is valid for `client01-bk.lab04.com`, then you approve it.

<table>
<thead>
<tr>
<th>Auto-discovered Mapping</th>
<th>Valid name for</th>
</tr>
</thead>
<tbody>
<tr>
<td>clusternname-bk.lab04.com</td>
<td>The virtual name of the SQL Server cluster on the private network</td>
</tr>
</tbody>
</table>
4. When you finish approving the valid mappings for the hosts, click on the Hosts tab at the bottom of the Hosts pane. For hosts client01-bk.lab04.com and client02-bk.lab04.com, you may see the following Mapped Host Names/IP Addresses.

<table>
<thead>
<tr>
<th>Host</th>
<th>Mapped Host Names/IP Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>client01-bk.lab04.com</td>
<td>clustername-bk.lab04.com</td>
</tr>
<tr>
<td>client02-bk.lab04.com</td>
<td>clustername-bk.lab04.com</td>
</tr>
</tbody>
</table>

5. If you need to add a mapping that NetBackup did not automatically discover, you can add it manually. Click on the Hosts tab, then right-click in the Hosts pane and click Add Shared or Cluster Mappings. For example, provide the name of the virtual name of the cluster. Then click Select Hosts to choose the hosts to which you want to map that virtual name.

Example mapped host names for a SQL Server cluster in a multi-NIC environment

<table>
<thead>
<tr>
<th>Table 5-3</th>
<th>Example mapped host names for a SQL Server cluster in a multi-NIC environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>Mapped Host Names</td>
</tr>
<tr>
<td>Private name of Node 1</td>
<td>Virtual name of the SQL Server cluster on the private network</td>
</tr>
<tr>
<td>Private name of Node 2</td>
<td>Virtual name of the SQL Server cluster on the private network</td>
</tr>
</tbody>
</table>

Configuring the number of jobs allowed for backup operations

When NetBackup starts a backup of SQL Server, a number of jobs are created. Depending on the policy configuration, additional jobs are created if you configure settings such as Number of backup stripes and Parallel backup operations. (For legacy policies, the equivalent settings are the Stripes setting and the BATCHSIZE keyword.)

You can increase or limit the number of jobs that are created. You can also control the number of jobs that are sent to the storage unit.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit jobs per policy</td>
<td>Sets the maximum number of instances that NetBackup can back up concurrently in each policy. This setting is configured in the policy attributes.</td>
</tr>
<tr>
<td></td>
<td>See the NetBackup Administrator’s Guide, Volume I.</td>
</tr>
<tr>
<td>Maximum jobs per client</td>
<td>In a policy, the maximum number of jobs per client that you want to allow. This setting applies to all clients in all policies. It is configured in the master server host properties on the Global Attributes node.</td>
</tr>
<tr>
<td></td>
<td>See “Configuring the Maximum jobs per client setting” on page 63.</td>
</tr>
<tr>
<td>Maximum concurrent jobs</td>
<td>The maximum number of jobs that NetBackup can send to a storage unit at one time. This setting is configured in the storage unit properties.</td>
</tr>
<tr>
<td></td>
<td>See the NetBackup Administrator’s Guide, Volume I.</td>
</tr>
<tr>
<td>Maximum concurrent write drives</td>
<td>The number of tape drives that NetBackup can use at one time for jobs to this storage unit. This setting is configured in the storage unit properties.</td>
</tr>
<tr>
<td></td>
<td>See the NetBackup Administrator’s Guide, Volume I.</td>
</tr>
</tbody>
</table>

Configuring the Maximum jobs per client setting

The **Maximum jobs per client** specifies the maximum number of concurrent backups that are allowed per instance or database (Intelligent Policies). Each instance or database that is specified in the policy creates a new backup job. For legacy policies, this setting indicates the maximum that is allowed per client.

To configure the maximum jobs per client

1. In the left pane of the NetBackup Administration Console, expand **NetBackup Management > Host Properties**.
2. Select **Master Server**.
3. In the right pane, double-click the server icon.
4. Click **Global Attributes**.
5. Change the **Maximum jobs per client** value to the wanted value.
 The default is 1.

For Intelligent Policies, use the following formula to calculate a smaller value for the **Maximum jobs per client** setting:
Maximum jobs per client = \(\text{number of database objects} \times \text{number of streams} \times \text{number of policies} \)

For legacy policies, use the following formula to calculate a smaller value for the Maximum jobs per client setting:

Maximum jobs per client = \(\text{number of streams} \times \text{number of policies} \)

Refer to the following definitions:

- \(\text{number of database objects} \) (Intelligent Policies) The number of databases, filegroups, or files that you want to back up in parallel.
- \(\text{number of streams} \) The number of backup streams between the database server and NetBackup. If striping is not used, each separate stream starts a new backup job on the client. If striping is used, each new job uses one stream per stripe.
- \(\text{number of policies} \) The number of policies of any type that can back up this client at the same time. This number can be greater than one. For example, a client can be in two policies to back up two different databases. These backup windows can overlap.
Performing restores of SQL Server

This chapter includes the following topics:

- Starting the NetBackup MS SQL Client for the first time
- Selecting the SQL Server host and instance
- Browsing for SQL Server backup images
- Options for NetBackup for SQL Server restores
- Restoring a SQL Server database backup
- Staging a full SQL Server database recovery
- Restoring SQL Server filegroup backups
- Recovering a SQL Server database from read-write filegroup backups
- Restoring SQL Server read-only filegroups
- Restoring SQL Server database files
- Restoring a SQL Server transaction log image without staging a full recovery
- Performing a SQL Server database move
- About performing a SQL Server page-level restore
- Configuring permissions for redirected restores
- Redirecting a SQL Server database to a different host
- Performing a restore of a remote SQL Server installation
Starting the NetBackup MS SQL Client for the first time

This topic describes how to start the NetBackup MS SQL Client for the first time. For subsequent sessions, the agent remembers the information you provided.

To start the NetBackup MS SQL Client for the first time

1. If you use SQL Server integrated security, log on to the Windows host with the Windows account that has permissions to perform SQL Server backups and restores.
2. Open the NetBackup MS SQL Client.
3. When you are prompted to provide the logon parameters, click OK.
4. Select the SQL Server host and instance that you want to log into.
5. If the SQL Server host and instance use standard or mixed security, provide the SQL Server user ID and password.
6. Click Apply > Close.

Selecting the SQL Server host and instance

Use this procedure to set which SQL Server host and the instance that you want the NetBackup MS SQL Client to access.

(Legacy SQL Server policies) The user ID and password are only required if the host uses standard or mixed security. If applicable, you only need to provide these credentials when you first open the NetBackup MS SQL Client.

To select the SQL Server host and instance

1. Open the NetBackup MS SQL Client.
2. Select File > Set SQL Server connection properties.
3. From the Host drop-down list, select the SQL Server host.

 You can type a host name if it does not appear in the drop-down list. If you select a remote host and click Apply, the Host type is shown as "remote".
4 From the **Instance** drop-down list, select the SQL Server instance.

You can type an instance name if it does not appear in the drop-down list. You can designate the default instance either by setting the Instance box to `<default>` or to empty (no spaces).

5 Click **Apply** > **Close**.

Browsing for SQL Server backup images

This procedure describes how to browse for a backup image from which you want to restore.

If you have multiple NICs, backups from a UNIX server, a NetBackup client name with a qualified domain name or an IP address, see the following:

See the section called "How NetBackup resolves SQL Server host and instance names" on page 68.

To browse for backup images

1 Change the host and instance you want to access.

 See “**Selecting the SQL Server host and instance**” on page 66.

2 Select **File > Restore SQL Server objects**.

3 Select the **SQL Host** whose backup images you want to browse, or type its name.

4 Indicate the **Source Client**, if applicable.

 ■ When the NetBackup client name and the host name are different you also need to also provide the **Source Client** name. For example, if the NetBackup client name is the network interface name.

 ■ For Intelligent Policies, you also need to indicate the **Source Client** if you add or register the instance with a host name that is different than the NetBackup client name.

5 (Optional) In the **Database name filter** box, provide a keyword or query to match databases with that name. Filtering on the database name can significantly reduce the time it takes for NetBackup to return the list of backup images.
6 Select the date range to search and click OK.
7 Continue with the applicable instructions for how to restore the objects.
 See “Restoring a SQL Server database backup” on page 71.
 See “Staging a full SQL Server database recovery” on page 72.
 See “Restoring SQL Server filegroup backups” on page 72.
 See “Recovering a SQL Server database from read-write filegroup backups” on page 73.
 See “Restoring SQL Server read-only filegroups” on page 74.
 See “Restoring SQL Server database files” on page 74.
 See “Restoring a SQL Server transaction log image without staging a full recovery” on page 75.
 See “Performing a SQL Server database move” on page 75.
 See “About performing a SQL Server page-level restore” on page 77.

How NetBackup resolves SQL Server host and instance names
To ensure that NetBackup displays the backup images you want, consider the following special cases:

- If backups are performed on a different network, the images are stored under the network interface name and not the NetBIOS name.
 See “Performing restores of SQL Server when you have multiple NICs” on page 182.

- Backups from a UNIX server. Since UNIX names are case-sensitive, you must provide the exact client name in the Source Client box field.
 SQL Host: TIGER
 Source Client: Tiger

- The NetBackup client name is a qualified domain name. The SQL Server host name or registered host name (Intelligent Policies) is the NetBIOS name. Specify the SQL Host as the NetBIOS name and the Source Client as the fully qualified domain name.
 SQL Host: Tiger
 Source Client: tiger.apexworks.com

- The NetBackup client name is an IP address. The SQL Server host name or registered host name (Intelligent Policies) is the NetBIOS name. Specify the SQL Host as the NetBIOS name and the Source Client as the IP address:
 SQL Host: Tiger
Options for NetBackup for SQL Server restores

Table 6-1 describes the options that are available when you perform restores.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scripting</td>
<td>These scripting options are available for restoring from a database image:</td>
</tr>
<tr>
<td>■ Restore selected object</td>
<td>Produce a script that performs a database restore. This script is the default option.</td>
</tr>
<tr>
<td>■ Create a move template</td>
<td>Create a script template for moving the selected database.</td>
</tr>
<tr>
<td>■ Restore read-only filegroups</td>
<td>Restore the most recent backup of every read-only filegroup.</td>
</tr>
<tr>
<td>■ Create a page restore template</td>
<td>Create a template for restoring a database, filegroup, or file from the pages that are contained in the selected backup image. The Microsoft SQL Server service must have full access permission to the folder <code>install_path\Netbackup\dbext\mssql\temp</code>.</td>
</tr>
<tr>
<td>■ Verify backup image, but don't restore</td>
<td>This option is only available if the image was backed up with the page verification option. NetBackup processes the image for errors, but does not perform a restore.</td>
</tr>
<tr>
<td>Use replace option</td>
<td>Restore with the SQL Server replace option.</td>
</tr>
<tr>
<td>Recovery</td>
<td>Specify one of the SQL Server recovery options.</td>
</tr>
<tr>
<td>■ Not recovered</td>
<td>Use this option during a restore if additional backup images must be applied to the database following the current restore. When you use this option, the database is left in a loading state.</td>
</tr>
<tr>
<td>■ Recovered</td>
<td>Restore the last image in a restore sequence. After the recovery operation, the database is ready for use. If you do not select this option, the database is in an intermediate state, and is not usable. If Recovered is selected when an intermediate backup is applied, you cannot continue to restore backups; you must restart the restore operation from the beginning.</td>
</tr>
<tr>
<td>■ Standby</td>
<td>Create and maintain a standby during a transaction log and database restore. This option requires a standby undo log, which by default is placed in <code>install_path\NetBackup\logs\SQLStandBy\</code>. The account that runs the Microsoft SQL Server service must have full access permission to the SQLStandBy folder. The database is placed in "standby" state following the restore.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Consistency check</td>
<td>Select the consistency check to perform after the restore. Output from the consistency check is written to the SQL Server client progress log. You cannot select consistency checking unless the database is restored to the recovered state. If you select consistency checking for a staged recovery, then the check occurs following the last restore.</td>
</tr>
<tr>
<td>■ None</td>
<td>Do not perform consistency checking.</td>
</tr>
<tr>
<td>■ Full check, excluding indexes</td>
<td>Exclude indexes from the consistency check. If indexes are not checked, the consistency check runs significantly faster but is not as thorough. Only the data pages and clustered index pages for each user table are included in the consistency check. The consistency of the non-clustered index pages is not checked.</td>
</tr>
<tr>
<td>■ Physical check only</td>
<td>Perform a low overhead check of the physical consistency of the SQL Server database. This option only checks the integrity of the physical structure of the page and record headers. It also checks the consistency between the pages’ object ID and index ID and the allocation structures.</td>
</tr>
<tr>
<td>■ Full check, including indexes</td>
<td>Include indexes in the consistency check. Any errors are logged.</td>
</tr>
<tr>
<td>■ Check catalog</td>
<td>Check for consistency in and between system tables in the specified database.</td>
</tr>
<tr>
<td>Page verification</td>
<td>Note: A performance penalty can happen when you use page verification.</td>
</tr>
<tr>
<td>Do not perform verification</td>
<td>Do not include page verification in the restore script.</td>
</tr>
<tr>
<td>Perform verification</td>
<td>Include page verification in the restore script and stop the restore if an error is encountered.</td>
</tr>
<tr>
<td>Stage full recovery</td>
<td>Perform a complete database restore using the recovery set that NetBackup found.</td>
</tr>
<tr>
<td>Restore selected</td>
<td>Restore only the selected transaction log.</td>
</tr>
<tr>
<td>transaction log</td>
<td></td>
</tr>
</tbody>
</table>
Table 6-1 Options for restore operations (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction log recovery options</td>
<td>This list contains the controls for you to restore a transaction log. You can restore the log to a point in time that precedes the time when the transaction log was dumped.</td>
</tr>
<tr>
<td>To point in time</td>
<td>Recover the transaction log to a point in time.</td>
</tr>
<tr>
<td>To transaction log mark</td>
<td>Recover the transaction log to a transaction log mark.</td>
</tr>
<tr>
<td>To transaction log mark but after</td>
<td>Recover the transaction log to a transaction log mark but after a point in time.</td>
</tr>
<tr>
<td>Before transaction log mark</td>
<td>Recover the transaction log recovered to a point before the occurrence of a transaction log mark.</td>
</tr>
<tr>
<td>Before transaction log mark but after</td>
<td>Recover the transaction log to a point before the occurrence of a transaction log mark but after a point in time.</td>
</tr>
<tr>
<td>Entire transaction log</td>
<td>Restore the entire log.</td>
</tr>
<tr>
<td>Transaction log mark</td>
<td>The transaction log mark you want to use for recovery.</td>
</tr>
<tr>
<td>YYYYY, MM, DD, HH, MM, SS am, pm</td>
<td>Specify the time to which you want the transaction logs restored.</td>
</tr>
<tr>
<td>Launch immediately</td>
<td>Start the restore operation immediately.</td>
</tr>
<tr>
<td>Save</td>
<td>Generate a script that can be started at a later time.</td>
</tr>
<tr>
<td>Restore</td>
<td>Start the restore or generate a restore script.</td>
</tr>
</tbody>
</table>

Restoring a SQL Server database backup

This topic describes how to restore a database from a full database or differential database backup.

To restore a database backup

1. Browse for the backup images you want to restore.

 See “Browsing for SQL Server backup images” on page 67.

2. Expand the database instance and the database.
3 Select the database image that you want to restore, as follows:
 ■ To restore a full backup, select the image of the database backup.
 ■ To restore a full backup and a differential database backup, click the "+" and select a differential backup.
4 Select the restore options.
 See “Options for NetBackup for SQL Server restores” on page 69.
5 Click Restore.

Staging a full SQL Server database recovery

This topic describes how to stage a full database recovery.

To stage a full database recovery

1 Browse for a backup image that contains the point in time to which you want to recover.
 See “Browsing for SQL Server backup images” on page 67.
2 Expand the database instance.
3 Click the "+" next to the database that contains the transaction log backup you want to restore.
4 Select the transaction log image that includes the point in time from which you want to recover.
5 Select **Stage full recovery**.
 When you view the properties of the transaction log, a **Recovery Set** tab displays.
 The recovery set can include any combination of backup images that are sufficient for staging the full recovery. These can include full database, filegroup, and differentials.
6 Click Restore.

Restoring SQL Server filegroup backups

This topic describes how to restore a backup of a filegroup. If you scheduled backups only include read-write filegroups, see the following topics.

See “Recovering a SQL Server database from read-write filegroup backups” on page 73.

See “Restoring SQL Server read-only filegroups” on page 74.
Note: If you attempt to restore a single differential backup without first restoring the preceding database backup file, SQL Server halts the load process. An error such as 4305 or 4306 is displayed. If you plan to restore a single differential, then you are responsible for first restoring the database backup file. You can avoid this problem by backing up the entire sequence of transaction logs. Also back up the differential backup and the backup file to the same NetBackup server. Then you can restore the entire sequence of backup objects.

See “Staging a full SQL Server database recovery” on page 72.

To restore a filegroup backup

1. Browse for the backup images you want to restore.

 See “Browsing for SQL Server backup images” on page 67.

2. Expand the database instance and database.

3. Expand the filegroup and select a filegroup image to restore, as follows:

 ▪ To restore a full backup, select the image of the filegroup backup.

 ▪ To restore a differential filegroup backup, click the "+" next to the full backup and select the differential backup.

4. Click Restore.

Recovering a SQL Server database from read-write filegroup backups

NetBackup for SQL Server automatically generates the most efficient recovery path when you select a transaction log image for restore. The recovery path can be based on read-write filegroups if you use them in your backup strategy. After restoring the read-write filegroups, you can bring the database online without having to restore the read-only filegroups.

To recover a database from read-write filegroups

1. Browse for the backup images you want to restore.

 See “Browsing for SQL Server backup images” on page 67.

2. Expand the database instance.

3. Expand the database that contains the read-write filegroups you want to restore.

4. Select the transaction log backup.

5. Right-click the transaction log backup and select Properties.
6. On the **Recovery set** tab, verify that a complete backup set is available and click **OK**.

7. Click **Restore**.

 See “Restoring SQL Server read-only filegroups” on page 74.

Restoring SQL Server read-only filegroups

This topic describes how to restore read-only filegroups.

To restore read-only filegroups

1. Browse for the backup images you want to restore.

 See “**Browsing for SQL Server backup images**” on page 67.

 Be sure that the start date for the Time Filter is early enough to include the timestamp of the earliest backup of the read-only filegroups.

2. Expand the database instance.

3. Select the database that contains the read-only filegroups you want to restore.

 In the **Scripting** list, **Restore read-only filegroups** is selected.

 The restore option is enabled if a full set of read-only filegroups is available.

4. Click **Restore**.

Restoring SQL Server database files

This topic describes how to restore database files.

To restore a database file

1. Browse for the backup images you want to restore.

 See “**Browsing for SQL Server backup images**” on page 67.

2. Expand the database instance and the database.

3. Expand the filegroup and the file.

4. Select the database file image that you want to restore.

5. Click **Restore**.
Restoring a SQL Server transaction log image without staging a full recovery

This topic describes how to restore a transaction log image without staging a full recovery.

To restore a transaction log without staging a full recovery

1. Browse for the backup images you want to restore.
 - See "Browsing for SQL Server backup images" on page 67.
2. Expand the database instance.
3. Select the transaction log image that you want to restore.
4. Select **Restore selected transaction log**.
5. Click **Restore**.

Performing a SQL Server database move

Note: NetBackup only supports a database move of a backup with FileStream enabled if the backup is stream-based.

A database move lets you use a full set of backup images to copy an existing database to a location under a different name. Database move operations can only be carried out when your selection includes a database image. This move can occur either when you directly select the database backup image, or when NetBackup finds a recovery set that contains a database backup image.

To perform a database move

1. Browse for the backup images you want to restore.
 - See "Browsing for SQL Server backup images" on page 67.
2. Expand the database instance.
3. Select the database backup image that you want to restore.
4. From the **Scripting** list, select **Create a move template**.
 - When you create a move script, the capability to perform an immediate launch is disabled. You must edit the script to specify certain destination parameters.
5. Click **Restore**.
6. Indicate a file name and click **Save > Yes**.
7 Change the database name in the template to the name of the database to restore to.

For example, replace:

```
# Replace the database name in the following line with the name of the database that you
# want to move to. Also remove the hash mark <#> which precedes the keyword <DATABASE>.
#
# DATABASE "DatabaseA"
```

with:

```
# Replace the database name in the following line with the name of the database that you
# want to move to. Also remove the hash mark <#> which precedes the keyword <DATABASE>.
#
DATABASE "DatabaseB"
```

8 Change the path for the database files that you want to restore.

You must uncomment at least one file. For example, replace:

```
# Replace the file path <C:\Microsoft SQL Server\MSSQL.3\MSSQL\DATA\DBA_FG1_File1.ndf>
# with a new file path. Also remove the hash mark <#> which precedes the keyword <TO>.
# The target of the MOVE keyword must be "DBA_FG1_File1".
MOVE "DBA_FG1_File1"
#TO "C:\Microsoft SQL Server\MSSQL.3\MSSQL\DATA\DBA_FG1_File1.ndf"
```

with:

```
# Replace the file path <C:\Microsoft SQL Server\MSSQL.3\MSSQL\DATA\DBA_FG1_File1.ndf>
# with a new file path. Also remove the hash mark <#> which precedes the keyword <TO>.
# The target of the MOVE keyword must be "DBA_FG1_File1".
MOVE "DBA_FG1_File1"
TO "C:\Microsoft SQL Server\MSSQL.3\MSSQL\DATA\DBB_FG1_File1.ndf"
```
9 Change the database file path.

For example, replace:

```bash
# Replace the file path <C:\Microsoft SQL Server\MSSQL.3\MSSQL\DATA\DatabaseA.mdf>
# with a new file path. Also remove the hash mark <#> which precedes the keyword <TO>.
# The target of the MOVE keyword must be "DatabaseA".
MOVE "DatabaseA"
#TO "C:\Microsoft SQL Server\MSSQL.3\MSSQL\DATA\DatabaseA.mdf"

with:

```bash
Replace the file path <C:\Microsoft SQL Server\MSSQL.3\MSSQL\DATA\DatabaseA.mdf>
with a new file path. Also remove the hash mark <#> which precedes the keyword <TO>.
The target of the MOVE keyword must be "DatabaseA".
MOVE "DatabaseA"
TO "C:\Microsoft SQL Server\MSSQL.3\MSSQL\DATA\DatabaseB.mdf"
```

10  Make similar changes to the template for any differential backups or transaction log backups you want to move.

11  When you finish modifying the template, save it.

12  To run the restore, select File > Manage script files.

13  Select the script that you created and click Start > Yes.

---

**About performing a SQL Server page-level restore**

*Note: Page-level restores are only applicable for SQL Server legacy backup policies.*

Use page-level restore to recover only the pages that are corrupted. If many pages are corrupt, then a full database recovery may be faster.

When you select the page restore option, NetBackup for SQL Server creates a page restore template.

This template includes the following parts:

- A page restore operation that you can modify by inserting the IDs of the pages that you want to restore.
- A series of transaction log images for recovering the database to the current point in time.
- A tail-log backup and recovery operation, which is required to bring the database online.
About SQL page-level restore requirements and limitations

The following requirements and limitations exist when you perform SQL Server page-level restores:

- Pages can be restored from the following backup types: Database, filegroup, file, read-write filegroups, and partial database.
- Your SQL Server must use either the full or bulk-logged recovery model.
- SQL Server sometimes cannot recover the specific pages that you request if they contain critical information about the definition of the database itself. For example, you cannot use page-level restore for the first page in a database file. When you detect that page-level restore does not work, you need to use full database recovery.
- A maximum of 1000 pages can be recovered from a backup image through a page-level restore.

Performing SQL Server page-level restores

This topic describes how to perform page-level restores. Note that the Microsoft SQL Server service must have full access permission to the folder install_path\netbackup\dbext\mssql\temp.

To perform a page-level restore

1. Obtain a list of corrupt pages in the database.
2. Browse for the backup images you want to restore.
   
   See “Browsing for SQL Server backup images” on page 67.
3. Expand the database instance and the database.
4. Select the database backup image that contains pages you want to restore.
5. From the Scripting list, select Create a page restore template.
6. Click Restore.
7. Type a file name for the page restore script and click Save > Yes.
8 Edit the page first operation the page IDs that you want to replace.
For example, replace:

```
Create one or more page restore requests. These use the following format
#PAGE file-id:page-id
```

with

```
Create one or more page restore requests. These use the following format
PAGE 1:14
PAGE 1:20
```

9 When you finish modifying the template, save it.

10 Select the script you created and click **Start > Yes**.

## Configuring permissions for redirected restores

Certain restore procedures or environments require that you configure permissions to allow a client to restore a backup that another client performed. See the *NetBackup Administrator’s Guide, Volume I* for complete details on redirected restores.

You must configure the master server for redirected restores if you want to redirect the restore of *ClientA* to *ClientB*.

You do not need to configure redirected restores for the following configurations:

- Restore databases in a SQL Server cluster to any of the nodes in the cluster
- Restore databases in an availability group to any of the nodes in the AG
- Restore clustered databases in a multi-NIC environment across the private interface

Instead these environments require that you configure the mappings for distributed application restores. You also need to review the auto-discovered mappings for the hosts in your environment.

See “Reviewing the auto-discovered mappings in Host Management” on page 57.

See “Configuring mappings for restores of a distributed application, cluster, or virtual machine” on page 56.
To allow a specific client or host to perform a redirected restore

1. On the master server, create an altnames file for each client or host that you want to have permissions to perform redirected restores.

   For example, to give HostB permissions to redirect a restore, create the following file:

   On Windows:
   
   \install_path\NetBackup\db\altnames\HostB

   On UNIX:
   
   /usr/openv/netbackup/db/altnames/HostB

2. In the altnames file, add the names of the hosts whose files the requesting client wants to restore.

   For example, assume that you want HostB to have permissions to redirect restores from HostA. Then add HostA to the HostB file.

To give a SQL Server host the permissions to restore backups in a multi-NIC environment

1. Create an altnames file with the private name of the host, for example SQLHOST1-NB.

   On Windows:
   
   \install_path\NetBackup\db\altnames\SQLHOST1-NB

   On UNIX:
   
   /usr/openv/netbackup/db/altnames/SQLHOST1-NB

2. In the altnames file, add the names of the hosts whose files the requesting client wants to restore.

   For example, assume that you want SQLHOST1-NB to have permissions to redirect restores from SQLHOST2-NB. Then add SQLHOST2-NB to the SQLHOST1-NB file.

Redirecting a SQL Server database to a different host

You can use a database move operation to redirect a backup to a client that is different from the client that performed the backup. NetBackup creates a template that you edit to indicate the host and location where you want to redirect the restore. The new location can be a different instance on the same host, a different host, or
a different file path. The move operation also lets you restore the database under a different name than the original one.

---

**Note:** The destination host and instance of a move or restore operation is the one that you log into. For move or restore operations designate the source (or browse) host and the instance when you select **File > Restore SQL Server objects**.

---

**To redirect a database to another location on a different host**

1. Establish permissions for redirected restores on the master server.
   
   See "Configuring permissions for redirected restores" on page 79.

2. The server that backed up the database you want to restore must appear in the server list of the destination host. If the server is not in the list, add it.
   
   See "About selecting a master server" on page 82.

3. Select **File > Set SQL Server connection properties**.

4. From the **Host** list, select the host you want to restore to.

5. From the **Instance** list, select the database instance.
   
   To select the default instance, either select `<default>` or leave the field empty.

6. Click **Apply** and then **Close**.

7. Select **File > Set NetBackup client properties**.

8. From the **Current NetBackup Server** list, select the NetBackup master server.

   This server contains the SQL Server backup images that you want to restore on the destination host. The clients must both use the same master server.

   See "About selecting a master server" on page 82.

9. Click **OK**.

10. Browse for the backup images you want to restore.

    For the **SQL Host** list, select the host that has the database you want to restore.

    See "Browsing for SQL Server backup images" on page 67.

11. Browse for the database that you want to move.

12. From the **Scripting** list, select **Create a move template**.

13. Click **Restore**.
14 Enter a file name and click **Save > Yes**.

15 Edit the template to designate the name that you want to use for the destination database. Also include the file paths that you want to use for each of the database files.

### About selecting a master server

When you perform a move, the backup images must be available on the host machine that acts as the NetBackup master server for the destination host. If this server is contained in the server list of the destination host, you can select the current master server by selecting **File > Set NetBackup client properties**.

If the server is not in the server list of the destination host you must duplicate the images onto removable media (with a unique ID). Then transport that media to the master server that the destination host uses, and import the images to that server. After the images are imported, continue with the instructions for performing a move. A server may not appear in the server list because the server is remote or has access limitations.

See “Performing a SQL Server database move” on page 75.

### Performing a restore of a remote SQL Server installation

You can use NetBackup for SQL Server to restore databases on a remote host. Generated batch files must be saved on the remote host. You can launch the operation from the local installation of NetBackup for SQL Server.

**To perform a restore of a remote SQL Server installation**

1. Select the host and instance you want to access.
   
   See “Selecting the SQL Server host and instance” on page 66.

2. Browse for the backup images you want to restore.
   
   See “Browsing for SQL Server backup images” on page 67.

3. Select the options for the operation.
   
   See “Options for NetBackup for SQL Server restores” on page 69.

   **Save** is enabled in the restore dialog box. **Launch immediately** is disabled because the generated script must be executed on the remote host that you are logged on to.

4. Click **Restore**.
5 Navigate to the install_path\NetBackup\DbExt\MsSql\ folder on the remote host, and save the batch file there.

6 Run the operation from the local installation of NetBackup for SQL Server.

**Restoring multistreamed SQL Server backups**

When you use the NetBackup MS SQL Client, backups using multiple stripes are automatically restored using the same number of stripes. Select the object you want to restore and NetBackup finds all of the related backups and restore them. Upon restore, all of the streams must also be available at the same time.

**About conventional backups using multiple streams**

If you specified multiple stripes for a non-snapshot backup, then the number of backup streams that you specified was created. NetBackup names these streams, for example:

- juneberry.MSSQL7.COLE.db.pubs.~.7.001of003.20140908200234..C
- juneberry.MSSQL7.COLE.db.pubs.~.7.002of003.20140908200234..C
- juneberry.MSSQL7.COLE.db.pubs.~.7.003of003.20140908200234..C

To create your own batch file to restore a striped object, specify only the first stripe name with the NBIMAGE keyword. NetBackup for SQL Server finds the remaining ones automatically. More information is available about the backup names that are used for SQL Server objects.

See “About using bplist to retrieve SQL Server backups” on page 84.

**About snapshot backup methods using multiple streams**

If you specified multiple stripes for any Snapshot Client backup, which streams the frozen image to tape, then NetBackup divides the number of component files equally among the number of stripes. If the number of files is less than the specified number of stripes, then the agent performs the backup using only as many stripes as there are files.

**Note:** NetBackup ignores the multistream directive for Instant Recovery backups.

With SQL Server backups that are performed with Snapshot Client, NetBackup identifies all of the backup streams by the same name. They are differentiated by NetBackup by their backup IDs.

- juneberry.MSSQL7.COLE.db.Northwind.~.7.001of003.20141012131132..C
Restoring a multistreamed SQL Server backup with fewer devices than it was backed up with

In your recovery environment, you may have fewer drives available for restores than you used for backups. In this situation, SQL Server times out while it waits for the additional backup images to be mounted. To prevent this time out, modify the recovery batch file to specify the number of drives that are available for restore.

Consider, for example, if you had performed a backup using 5 drives, and only 2 are available for recovery. In the recovery batch file, change the stripes parameter from `STRIPES 5` to `STRIPES 2`. This change causes SQL Server to request two backup images at a time until all five images are restored.

About using `bplist` to retrieve SQL Server backups

You can use the `bplist` command to obtain restore images. Use this command if you plan to manually create a restore script, rather than through the NetBackup for SQL Server interface. See the [NetBackup Commands Reference Guide](#) for complete information about `bplist`.

To extract all of the NetBackup for SQL Server backups from a specific server for a specific client, run the following command from the Windows command prompt.

```
install_path\NetBackup\bin\bplist -C client -t 15 -S server -R \\
```

where `client` is the host machine on which NetBackup for SQL Server resides and `server` is the host machine of NetBackup server.

The following example shows how to obtain the list of SQL Server backups that were backed up from client juneberry to server Cole:

```
C:\Program Files\NetBackup\bin\bplist -C juneberry -t 15 -S cole -R \\
juneberry.MSSQL7.JUNEBERRY.db.pubs.~.7.001of003.20140920101716..C:\
juneberry.MSSQL7.JUNEBERRY.db.pubs.~.7.002of003.20140920101716..C:\
juneberry.MSSQL7.JUNEBERRY.db.pubs.~.7.003of003.20140920101716..C:\
juneberry.MSSQL7.JUNEBERRY.fil.pubs.pubsnew.7.001of001.20140919175149..C:\
juneberry.MSSQL7.JUNEBERRY\NEWINSTANCE.trx.abc.~.7.001of001.20140902170920..C:\
juneberry.MSSQL7.JUNEBERRY\NEWINSTANCE.fg.abc.PRIMARY.7.001of001.20140902170824..C:\
juneberry.MSSQL7.JUNEBERRY\NEWINSTANCE.db.Howard's Barbeque.~.7.001of001.201409011085255..C:\
juneberry.MSSQL7.JUNEBERRY\NEWINSTANCE.inc.Howard's Barbeque.~.7.001of001.20140903108552..C:\
juneberry.MSSQL7.COLE.db.pubs.~.7.001of001.20140907100101..C:\
juneberry.MSSQL7.COLE.db.pubs.~.7.001of001.20140908200234..C:\
```
### About NetBackup for SQL Server backup names

The backup name is a string that consists of the following components. These components are separated by a delimiter that is specified by the character that precedes the “C” at the end of the backup image name. Backup images for standalone instance databases or read-scale availability groups include the host and the instance name. Backup images for advanced and basic availability groups include the cluster name, availability group node name, and availability group name.

1. Named instances are formatted as `<host>/<instance-name>`. The default instance is the name of the host machine.
2. The object types are as follows:
3 - The name of the file or filegroup if the object type is a file or filegroup; otherwise the symbol ~ is used.

4 - The block size.

5 - Stripes are specified as `<stripe number>`of`<total stripes>`. Non-stripped backups are always 001of001. For striped backups, `<total stripes>` is the total number of stripes for the backup. `<stripe number>` is the count number of the backup for that backup, starting with 001.

6 - The format of the timestamp is `YYYYMMDDHHMMSS`. The timestamp for availability gorup backup images reflects Coordinated Universal Time (UTC). For standard database backup images, the timestamp reflects the time zone that is configured for the NetBackup server.

7 - The delimiter, which immediately precedes the version indicator. For standard database images, this character is a period (`.`) by default. For availability database images, the character is a forward slash (`/`). However, if a period or slash is used in any of the fields, the delimiter may be another character.

8 - “C” is applied to all SQL Server backup image names, regardless of the NetBackup version.

9 - Backup images for AG databases are formatted as `<WindowsServerFailoverCluster>:\<nodename>\MSSQL7\<AGname>`.
Protecting SQL Server data with VMware backups

This chapter includes the following topics:

- About protecting SQL Server data with VMware backups
- About configuring NetBackup for VMware backups that protect SQL Server
- Configuring the NetBackup services for a VMware backup that protects SQL Server
- Configuring a VMware backup policy to protect SQL Server
- Configuring a VMware policy to protect SQL Server using Replication Director to manage snapshot replication
- Restoring SQL Server databases from a VMware backup

About protecting SQL Server data with VMware backups

With a VMware backup policy and the Veritas VSS provider, NetBackup can create consistent, full backups of an application database that resides on a virtual machine. VMware application backups let you:

- Choose whether or not to truncate logs.
- Use the existing SQL Server restore process to restore and recover data from VMware backups.
- From one VMware backup, choose from these restore options: Volume-level restore, file-level recovery, or database restore.
• Restore and recover databases from VMware backups to alternate clients. The target destination client can be a physical computer or a virtual machine.

**Supported environments and configuration**

See the following information on virtual systems compatibility:

https://www.veritas.com/content/support/en_US/doc/NB_70_80_VE

**Veritas VSS provider**

Veritas recommends the Veritas VSS provider. VMware Tools calls the provider to quiesce the VSS writers for a file-level consistent backup. Without this VSS provider (or the VMware VSS Provider), database recovery may require manual steps and granular recovery is not supported.

See “Installing the Veritas VSS provider for vSphere” on page 89.

The Veritas VSS provider allows VMware backups that truncate the logs on SQL Server virtual machines. The Veritas VSS provider truncates the logs by means of full VSS backups. Note that the VMware VSS provider creates copy-only backups, which cannot be used as a basis to truncate logs.

**Using NetBackup Accelerator to increase speed of full VMware backups**

Select the **Use Accelerator** option to use NetBackup Accelerator to potentially increase the speed of full VMware backups. By reducing the backup time, it is easier to perform the VMware backup within the backup window. To use this feature, you must first perform an initial backup with **Use Accelerator** enabled. Subsequent backup times can then be significantly reduced. Accelerator support for SQL Server currently restricts backups to the full schedule type.

To periodically establish a new baseline of change detection on the client, create a separate policy schedule with the **Accelerator forced rescan** option enabled.

For more details on Accelerator with VMware backups, see the NetBackup for VMware Administrator’s Guide.

**Limitations of VMware application backups**

Databases are cataloged and protected only if they exist in a configuration that is supported for VMware backups. Make sure to store databases and transaction logs on supported storage.

VMware application backups do not support the following policy options and configurations:

• Incremental backups. Instead, you can create an MS-SQL-Server policy for SQL Server incremental backups
- SQL Server clusters or SQL Server availability groups.
- SQL Server databases are not cataloged and backed up if they exist on the following:
  - Virtual machines that use raw device mapping (RDM).
  - Virtual Machine Disk (vmdk) volumes that are marked as independent.
  - Virtual hard disks (VHDs).
  - RAID volumes.
  - ReFS file systems.
  - An excluded Windows boot disk.

For additional information, see the "Virtual Systems Compatibility" section in the following document:

https://www.veritas.com/content/support/en_US/doc/NB_70_80_VE

Installing the Veritas VSS provider for vSphere

To use the Veritas VSS provider you must install it manually following installation of the NetBackup for Windows client. If the VMware VSS provider is installed, the installation program removes it and may require a restart of the computer.

**To install the Veritas VSS provider**

1. Browse to the following location:

   \install_path\Veritas\NetBackup\bin\goodies\

2. Double-click on the **Veritas VSS provider for vSphere** shortcut.
3. Follow the prompts.
4. When the utility has completed, restart the computer if prompted.
5. Following the restart, the utility resumes. Follow the prompts to complete the installation.

**To uninstall the Veritas VSS provider**

1. In the Control Panel, open **Add or Remove Programs** or **Programs and Features**.
2. Double-click on **Veritas VSS provider for vSphere**.

   The uninstall program does not automatically reinstall the VMware VSS provider.
# About configuring NetBackup for VMware backups that protect SQL Server

Table 7-1  Steps to configure VMware backups that protect SQL Server

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 1 | Configure the logon account for the NetBackup services. | The logon account for the NetBackup Client Service and the NetBackup Legacy Network Service must meet certain requirements.  
See “Configuring the NetBackup services for a VMware backup that protects SQL Server” on page 91. |
| Step 2 | If you choose to truncate logs, ensure that the account that runs the Microsoft SQL Server Service has full permissions for the NetBackup Legacy Network Service temp directory. | This directory is C:\Users\user\AppData\Local\Temp. User is the account that runs the NetBackup Legacy Network Service. |
| Step 3 | If you want to use Replication Director to manage your VMware snapshots and snapshot replicas, create a storage lifecycle policy (SLP). | See the NetBackup Replication Director Solutions Guide. |
| Step 4 | Configure a VMware policy. | See “Configuring a VMware backup policy to protect SQL Server” on page 92.  
See “Configuring a VMware policy to protect SQL Server using Replication Director to manage snapshot replication” on page 94. |
| Step 5 | If you use a **Primary VM identifier** other than **VM hostname**, you need to map that identifier to the host name of the VM. | Configure this mapping in the **Distributed Application Restore Mapping** host property on the master server.  
See “Configuring mappings for restores of a distributed application, cluster, or virtual machine ” on page 56. |
| Step 6 | Review the auto-discovered mappings for the hosts in your environment. | Approve each valid **Auto-Discovered Mapping** that NetBackup discovers in your environment. Perform this configuration in the **Host Management** properties on the master server.  
See “Reviewing the auto-discovered mappings in Host Management” on page 57. |
Configuring the NetBackup services for a VMware backup that protects SQL Server

NetBackup uses the NetBackup Client Service and the NetBackup Legacy Network Service to access the SQL Server when it performs VMware backups and restores. The logon account for the NetBackup services must meet the following requirements:

- You must use an account other than the Local System account as the logon account. Both services must use the same logon account. To change the logon account, you must have administrator group privileges.

- For VMware backups with Replication Director, the account has access to the CIFS shares on the NetApp disk array.

- The account has the fixed server role “sysadmin”. You can use a domain account, a member of BUILTIN\Administrators, or another account that has this role.

- If you choose to truncate logs, ensure that the account that runs the Microsoft SQL Server Service has full permissions for the NetBackup Legacy Network Service temp directory. This directory is C:\Users\user\AppData\Local\Temp. User is the account that runs the NetBackup Legacy Network Service.

To configure the NetBackup services for a VMware backup that protects SQL Server

1. Log on to the Windows host with the account that has the sysadmin role and any necessary local security privileges.

2. If the SQL Server host and instance use standard or mixed security, perform the following steps:
   - Open the NetBackup MS SQL Client.
   - Select File > Set SQL Server connection properties.
   - Provide the SQL Server Userid and Password, click Apply > Close.

3. In the Windows Services application, open the NetBackup Client Service.

4. Provide the name of the logon account and click OK.
   The account must include the domain name, followed by the user account, domain_name\account. For example, recovery\netbackup.

5. Open the NetBackup Legacy Network Service service.

6. Configure the same logon account for this service as you did for the NetBackup Client Service.
7 Stop and start the services.
8 Configure the services for each host that you use to browse for backups and perform restores.

Configuring a VMware backup policy to protect SQL Server

Through a VMware backup policy, NetBackup can create full application-consistent backups of the SQL Server databases that reside on a virtual machine. Optionally you can use NetBackup Accelerator. VMware policies let you exclude certain virtual disks from the VMware backup. If you want to exclude specific SQL Server components, use a MS-SQL-Server policy.

To truncate logs, you must first perform a full VMware backup without log truncation. When this backup is complete, then enable log truncation in the policy.

For additional details on how to create a VMware policy, see the NetBackup for VMware Administrator's Guide.

More information on Accelerator is available:

See “About policy attributes” on page 38.

See the NetBackup Administrator's Guide, Volume I.

To configure a VMware backup policy to protect SQL Server

1 Create a new policy or open the policy you want to configure.

2 Click the Attributes tab.

   ■ From the Policy type list, select VMware.

   ■ In the Policy storage list, select a disk storage unit.
     
     If you want to use NetBackup Accelerator, select a PureDisk storage unit type (MSDP or PureDisk). The NetBackup device mapping files list all supported storage types.

   ■ If you want to use NetBackup Accelerator, click Use Accelerator.
     
     Accelerator uses the initial full backup to establish a baseline. Any subsequent backups that are performed with Accelerator can run significantly faster. You may want to create an additional policy schedule that enables the Accelerator forced rescan option. This option establishes a new baseline for the next Accelerator backup.

     Perform block level incremental backups is automatically selected and grayed out. On the VMware tab, the Enable block-level incremental backup option is also selected and grayed out.
3 On the **Schedules** tab, create a schedule for full backups.

4 On the **Clients** tab, do the following:
   - Click **Select automatically through query**.
   - Select **NetBackup host to perform automatic virtual machine selection** and the host you want to use.
   - Use the Query Builder to create the rules that select the virtual machines you want to back up.

5 Select the **VMware** tab:
   - Select the **Primary VM identifier** to use to catalog the backups.
   - Select **Enable file recovery from VM backup**.
   - Select **Enable SQL Recovery**.
     This option allows recovery of the databases from the virtual machine backups. If this option is disabled, you can recover the entire virtual machine from the backup, but you cannot recover the databases individually.
   - Do not enable **Truncate logs** at this time. You must first perform a full backup without log truncation, described later in this procedure.

6 If you want to exclude certain disks from the VMware backup, click the **Exclude Disks** tab.
   NetBackup excludes those disks from the VMware backup that protects SQL Server. Be sure that any disks that you exclude do not contain database data.

7 Click **OK** to save the policy.
   If you do not want to truncate transaction logs, no further action is necessary.
   If you want to truncate transaction logs, continue with step 8.

8 Perform a full backup without log truncation.
   When the backup completes, open the policy that you created in step 1.

9 Click the **VMware** tab and under **Enable SQL Recovery**, select **Truncate logs**.
   For SQL Server, this option truncates the transaction logs when the VMware snapshot of the virtual machine is complete.

10 Click **OK** to save the policy.

11 Perform a full VMware backup.
Configuring a VMware policy to protect SQL Server using Replication Director to manage snapshot replication

This topic describes how to configure a VMware policy to back up SQL Server using Replication Director to manage snapshot replication. Note that NetBackup must have access to the CIFS share on the NetApp disk array. For more details on VMware policies, see the NetBackup for VMware Administrator's Guide.

For complete details on how to configure Replication Director with VMware backups, see the NetBackup Replication Director Solutions Guide.

To configure a VMware policy to back up SQL Server using Replication Director to manage snapshot replication:

1. Log on to the master server as administrator.
2. Start the NetBackup Administration Console.
3. Create a policy or open the policy you want to configure.
4. Click the Attributes tab.
   - From the Policy type list, select VMware.
   - In the Policy storage list select the storage lifecycle policy (SLP) that you want to use. This SLP must be configured for snapshot replication.
   - In the Snapshot Client and Replication Director group, click Use Replication Director.
5. On the Schedules tab, create a schedule for full backups.
6. On the Clients tab, do the following:
   - Click Select automatically through query.
   - Use the Query Builder to create the rules that select the virtual machines you want to back up.
   - Select NetBackup host to perform automatic virtual machine selection and the host you want to use.
7. On the VMware tab, enable the following options:
   - Primary VM identifier to use to catalog the backups.
   - Enable file recovery from VM backup. This option allows for application protection of SQL Server.
   - Enable SQL Recovery.
This option allows recovery of the SQL databases from the virtual machine backups. If this option is disabled, you can recover the entire virtual machine from the backup, but you cannot recover the databases individually.

- Do not enable Truncate logs at this time. You must first perform a full backup without log truncation, described later in this procedure.

8 Click OK to save the policy.

If you do not want to truncate transaction logs, no further action is necessary.
If you want to truncate transaction logs, continue with step 9.

9 Perform a full backup without log truncation.
When the backup completes, open the policy that you created in step 2.

10 Click the VMware tab and under Enable SQL Recovery, select Truncate logs.

11 Click OK to save the policy.
12 Perform a full VMware backup.

Restoring SQL Server databases from a VMware backup

The following steps describe how to restore an SQL Server database from a full VMware backup.

To restore a SQL Server database from a VMware backup

1 Browse for the backup images you want to restore.
See “Browsing for SQL Server backup images” on page 67.

2 Expand the database instance and the database.

3 Select the database image that you want to restore.
Only the Recovered recovery option is available for VMware backups of SQL Server.

4 Click Restore.
Configuring backups with Snapshot Client

This chapter includes the following topics:

- **About NetBackup Snapshot Client for SQL Server**
- **How SQL Server operations use Snapshot Client**
- **Configuration requirements for SQL Server snapshot and Instant Recovery backups**
- **Configuring a snapshot policy for SQL Server**
- **Configuring a policy for Instant Recovery backups of SQL Server**
- **Using copy-only snapshot backups to affect how differentials are based**
- **About SQL Server agent grouped backups (legacy SQL Server policies)**

**About NetBackup Snapshot Client for SQL Server**

NetBackup for SQL Server includes support for snapshot backups. The snapshot technology uses SQL Server VDI (virtual device interface) quiescence to affect a momentary freeze on database activity. Then the agent can back up and restore SQL Server objects by taking snapshots of the component files. Data is captured at a particular instant. The resulting snapshot can be backed up without affecting the availability of the database. These snapshots are backed up to the storage unit.

A separate Snapshot Client license provides additional features for snapshot backups. You can configure the snapshot image for Instant Recovery and you can configure an alternate client to perform the snapshot backup.
The following NetBackup Snapshot Client features are available for use with NetBackup for SQL Server:

- **Snapshot backup**: A point-in-time, read-only, disk-based copy of a client volume. NetBackup backs up data from the snapshot, not directly from the client’s primary or original volume.
- **Instant Recovery**: Makes the backups available for recovery from the local disk. The snapshot can also be the source for an additional backup copy to tape or other storage.
- **Off-host backup**: Shifts the burden of backup processing onto a separate backup agent, reducing the backup impact on the client’s computing resources. The backup agent sends the client’s data to the storage device.

Although all of these features are provided through Snapshot Client support for SQL Server, not all snapshot methods are supported. For information on how to select a method, see the NetBackup Snapshot Client Administrator’s Guide. For a description of snapshot methods available for use with NetBackup for SQL Server, see the NetBackup Snapshot Client compatibility list.

### How SQL Server operations use Snapshot Client

This topic describes how SQL Server operations use the Snapshot Client.

**About selection of backup method**

The selection of a backup methodology, whether standard or Snapshot Client, is dependent on what policy is used. If a policy configured for Snapshot Client is selected, then additional attributes of policy determine the Snapshot Client features. It also determines the specific snapshot methods that are used.

**About SQL Server limitations with snapshots**

Due to SQL Server limitations certain objects cannot be backed up by snapshots. These are database differentials, filegroup differentials, and transaction logs. If a Snapshot Client policy is selected to back up one of these object types, then NetBackup performs a stream-based backup. NetBackup uses the storage unit that is provided in the policy configuration. If a storage unit is not provided, then NetBackup uses the default storage unit for the server.

**What is backed up by NetBackup for SQL Server**

The database administrator works exclusively with logical objects, such as databases and filegroups. However, it is useful to understand the differences between file-
and stream-based backups in terms of the data content that is archived. For stream-based backups, NetBackup captures the data stream content that is provided by SQL Server. If the user has specified multiple streams, then SQL Server opens multiple streams that NetBackup catalogs as separate images.

For file-based backups, NetBackup creates a file list that consists of all the physical files that constitute the object. This file list is supplied to the Snapshot Client, which is responsible for snapshot creation. If multiple streams are specified, then NetBackup divides the file list into sub-lists. Each sub-list is backed up separately and constitutes a separate image. Users may notice that if multiple streams are specified for a file-based backup and if the number of streams exceeds the number of component files, then the number of file-based streams does not exceed the number of files. With stream-based SQL Server backups, SQL Server always creates exactly the number of streams that the end user specifies.

The file list that is used to back up a SQL Server database consists of the physical files that constitute the primary filegroup. The file list also consists of any secondary filegroups, and the transaction log. Typically, these can be identified respectively by their name extensions, which are .mdf, .ndf, and .ldf. The file list for a filegroup backup consists of the physical files that belong to the filegroup. And, finally, the file list for a file object backup consists of a single physical file. This file is the file that maps to the SQL Server file object.

### About Snapshot Client and SQL Server performance considerations

When a physical file is backed up with the Snapshot Client, the backup consists of the entire extent. This backup contrasts with stream-based SQL Server backups where only the actual data content of the objects are archived. If you intend to use snapshot technology to back up SQL Server, you may want to use the SQL Server dynamic file allocation. This configuration reduces the likelihood that any of the component files contain large areas of empty space.

Also review the other considerations for SQL Server disk initialization.

See “About NetBackup for SQL performance factors” on page 196.

### About SQL Server snapshot backups

No special interfacing considerations exist when you perform Snapshot Client backups of SQL Server. A snapshot backup is performed if the backup object is: a database, a filegroup, or a file and a policy is selected and configured for Snapshot Client. If a differential backup or transaction log backup is tried with a Snapshot Client backup, then the operation uses the selected policy. But a standard database backup is performed with the configured storage unit.
About SQL Server snapshot restores

Any backup images that were created from snapshots display along with standard backup images. That is, all backup items—without regard to method—display in a time-sequenced ordering that respects the composition of the database hierarchy. In addition, no weighting is given in to determine an optimal recovery that is based on the backup method. To determine what backup method and policy were used when a SQL Server backup was created, right-click the backup image and select Properties.

Figure 8-1  Backup method that appears in the backup image properties

Configuration requirements for SQL Server snapshot and Instant Recovery backups

Review the following requirements before you configure NetBackup for SQL Server with snapshot backups:
See the NetBackup Snapshot Client Administrator’s Guide for details on the hardware requirements and software requirements for the snapshot method that you want to use.

Go to the Veritas Support website for details on the snapshot methods and platforms that are supported for NetBackup for SQL Server.

The volume(s) which contains the SQL Server databases and log files should be dedicated to SQL Server only. Other types of databases (e.g., Exchange) should not reside on the volume(s).

NetBackup Snapshot Client is installed and configured correctly and you have a the license for this option. See the NetBackup Snapshot Client Administrator’s Guide for details.

Only one snapshot method can be configured per policy. If you want to use a different snapshot method different clients, then create a separate policy for each group of clients and the snapshot method you want to use. Then select one method for each policy.

NetBackup does not support Instant Recovery with availability groups.

Configuring a snapshot policy for SQL Server

These instructions describe how to configure a Snapshot Client policy. Optionally you can choose to perform an off-host backup. This topic only covers what is necessary to configure snapshot backups for a MS-SQL-Server policy.

See “About SQL Server Intelligent Policies” on page 37.

See “Adding a new SQL Server legacy policy” on page 154.

To configure a snapshot policy for SQL Server

1 For SQL Server legacy policies, create a backup script (.bch file) using the NetBackup MS SQL Client.

2 Open the policy you want to configure.

3 Click the Attributes tab.

4 From the Policy type list, select MS-SQL-Server.

5 Select the Policy storage.

If database differentials, filegroup differentials, or transaction logs are included in the Backup Selections list of a policy that uses Snapshot Client, then NetBackup performs a stream-based backup. The selected storage unit is used. If a storage unit is not provided, then NetBackup uses the default storage unit for the server.
6 Select **Perform snapshot backups**.

7 Choose to have NetBackup select the snapshot method or select the snapshot method manually.

Perform one of the following:

- By default, NetBackup chooses a snapshot method for you. If you have changed this setting and want NetBackup to choose the method automatically, click **Snapshot Client Options**. Then from the **Snapshot method** list, select **auto**.
- To use a specific snapshot method, click **Snapshot Client Options**. From the **Snapshot method** list, select the method you want to use for this policy.

See the **NetBackup Snapshot Client Administrator’s Guide** for details on how to select the snapshot method and automatic snapshot selection.

8 (Optional) To use an alternate client to reduce the processing load on the client, perform the following steps:

- The alternate client must be the client that shares the disk array. This option may require additional configuration. See the **NetBackup Snapshot Client Administrator’s Guide**.
- Select **Perform off-host backup**.
- Click **Use alternate client** and enter the name of the alternate client.

---

**Note:** **Use data mover** is not a supported option for NetBackup for SQL Server.

9 On the **Instances and Databases** tab, choose how you want to protect SQL Server:

- (SQL Server Intelligent Policy) Choose **Protect Instances** or **Protect instance groups**.
  - If you choose the instances option, you can select either individual instances or databases.
  - See “Adding instances to a policy” on page 42.
  - See “Adding databases to a policy” on page 43.
  - See “Adding instance groups to a backup policy” on page 48.
- (SQL Server legacy policies) Choose **Clients for use with batch files**.

10 (SQL Server Intelligent Policy) Add other policy information as follows:

- Add schedules.
  - See “About schedule properties” on page 39.
(Optional) Select specific filegroups or files that you want to back up. By default, NetBackup backs up an entire database. See “Adding filegroups or files to the backup selections list” on page 46.

(Optional) Make changes to any tuning parameters. See "About tuning parameters for SQL Server backups" on page 49.

11 (SQL Server legacy policies) Add other policy information as follows:

- Add schedules. See “About schedule properties ” on page 155.
- Add clients. See “Adding clients to a policy” on page 160.
- Add batch files to the backup selections list. See “Adding batch files to the backup selections list ” on page 161.

12 Click OK to save the policy.

Configuring a policy for Instant Recovery backups of SQL Server

Note: NetBackup does not support Instant Recovery backups of availability databases.

These instructions describe how to configure a policy for Instant Recovery. Optionally you can choose to back up to disk only. This topic only covers what is necessary to configure Instant Recovery backups for a MS-SQL-Server policy.

See “About SQL Server Intelligent Policies” on page 37.

See “Adding a new SQL Server legacy policy” on page 154.

To configure a policy for Instant Recovery

1 For SQL Server legacy policies, create a backup script using the NetBackup MS SQL Client interface.

2 Open the policy you want to configure.

3 Click the Attributes tab.

4 From the Policy type list, select MS-SQL-Server.
5 Select the **Policy storage**.

If you select an Instant Recovery option on the **Schedules** tab (see step 10), the storage unit is not used. NetBackup creates only a disk snapshot.

If database differentials, filegroup differentials, or transaction logs are included in the policy, then NetBackup performs a stream-based backup. This backup uses the selected storage unit. If a storage unit is not provided, then NetBackup uses the default storage unit for the server.

6 Click **Perform snapshot backups**.

7 Choose to have NetBackup select the snapshot method or select the snapshot method manually.

Perform one of the following:

- By default, NetBackup chooses a snapshot method for you.
- To use a specific snapshot method, click **Snapshot Client Options** and select it from the **Snapshot method** list.

See the [NetBackup Snapshot Client Administrator’s Guide](#) for details on how to select the snapshot method and automatic snapshot selection.

8 Select **Retain snapshots for Instant Recovery**.

NetBackup retains the snapshot on disk, so that Instant Recovery can be performed from the snapshot.

A normal backup to storage is also performed, if you do not choose to create a snapshot only (see step 10).

9 On the **Instances and Databases** tab, choose how you want to protect SQL Server:

- (SQL Server Intelligent Policy) Choose **Protect Instances** or **Protect instance groups**.
  
  If you choose the instances option, you can select either individual instances or databases.
  
  See “Adding instances to a policy” on page 42.
  
  See “Adding databases to a policy” on page 43.
  
  See “Adding instance groups to a backup policy” on page 48.

- (SQL Server legacy policies) Choose **Clients for use with batch files**.

10 To configure schedules, click the **Schedules** tab.

- (SQL Server Intelligent Policies) Configure a full backup schedule.
  
  See “About schedule properties” on page 39.
• (Legacy policies) Follow the instructions to configure an Application and a full backup schedule.
  See “About schedule properties” on page 155.

For snapshot backup policies, a full backup schedule must exist for NetBackup to successfully convert differential backups to full backups.

11 (Optional) To create a disk image only, open the Full Backup schedule (Intelligent Policies) or the Application schedule (legacy policies) and select an Instant Recovery option.

Select one of the following options:

• If Snapshots and copy snapshots to a storage unit is selected, NetBackup creates a disk snapshot. NetBackup also backs up the client’s data to the storage unit that is specified for the policy.

• If Snapshots only is selected, the image is not backed up to tape or to other storage. NetBackup creates a disk snapshot only. Note that this disk snapshot is not considered a replacement for traditional backup.

12 (SQL Server Intelligent Policy) Add other policy information as follows:

• (Optional) Select specific filegroups or files that you want to back up. By default, NetBackup backs up an entire database.
  See “Adding filegroups or files to the backup selections list” on page 46.

• (Optional) Make changes to any tuning parameters.
  See “About tuning parameters for SQL Server backups” on page 49.

13 (SQL Server legacy policies) Add other policy information as follows:

• Add clients.
  See “Adding clients to a policy” on page 160.

• Add batch files to the backup selections list.
  See “Adding batch files to the backup selections list” on page 161.

14 Click OK to save the policy.

Using copy-only snapshot backups to affect how differentials are based

When you use both full backups and snapshot backups to protect SQL Server, the previous snapshot backup expires after the next snapshot backup is created. If you require a point in time restore before the latest backup, the differentials are based on a snapshot backup that no longer exists. Alternatively, NetBackup lets you create
copy-only backups that are out-of-band so the backup does not reset the differential baseline. Differential backups are then based on the last full backup.

If a failure occurs and is detected immediately, you can restore the last full backup. Then you can replay the necessary transaction logs to achieve recovery. However, if a failure is not detected until after the next full backup, then there are no snapshot backups available to restore (see Figure 8-2). When you use copy-only backups, each differential is instead based on the last full backup that is not copy-only. You can restore the last full backup, restore the latest differential backup, then restore the necessary transaction log backups before the error occurred.

Figure 8-2 Recovering after an error when using full and copy-only backups

The copy-only attribute appears in the properties for the snapshot backup image. Differential backups are automatically associated with the correct full backup. The SQL Agent recognizes these backups when it selects the recovery set for the full database restore.

Creating a copy-only backup (legacy SQL Server policies)

Any backup can be created as copy-only. An Instant Recovery backup is automatically created as copy-only. For legacy SQL Server policies, set the `COPYONLY TRUE` setting in the backup batch file. For SQL Server Intelligent Policies, enable Copy-only backup on the Microsoft SQL Server tab.

See “About tuning parameters for SQL Server backups” on page 49.
To create a copy-only backup
1. Open an existing batch file in a text editor.
2. Insert the following:
   COPYONLY TRUE
3. Save the batch file.

Creating an Instant Recovery backup that is not copy-only (legacy SQL Server policies)

For Instant Recovery backups, NetBackup automatically creates the backup image as copy-only. You can choose *not* to create the backup as copy-only.

To create an Instant Recovery backup that is not copy-only
1. Open an existing batch file in a text editor.
2. Insert the following:
   COPYONLY FALSE
3. Save the batch file.

About SQL Server agent grouped backups (legacy SQL Server policies)

*Note:* This feature is only available with legacy SQL Server backup policies.

The SQL Server agent provides a method in which multiple databases can be quiesced together and split-off to form a single snapshot. This method minimizes the usage of system resources if the databases exist on a single volume. This happens because the aggregation of constituent files uses one snapshot volume instead of one per database. The method for aggregating database Snapshot Client backups is called backup "grouping".

When databases are backed up in a group, all of the databases are quiesced simultaneously. The constituent files of all databases are backed up to a single storage image under the same backup ID. This means that an "import and copy" procedure would use only one image to export all of the database backups in the group.
Requirements for a grouped backup

Certain requirements must be met for a grouped backup to be performed. If any of the following requirements are not met, a standard backup is performed:

- All backup operations must be full backups. Differential backups are not supported.
- The master database cannot be included in a grouped backup.
- The same policy must be specified for each backup operation in the group.
- The same NetBackup server must be specified for each backup operation in the group.

Viewing the progress of a grouped backup

You can determine that a grouped backup is underway from the progress report. See Figure 8-3.

The keyword GROUPSIZE appears at the beginning of the batch file. This keyword indicates that NetBackup uses grouping to back up the selected SQL Server databases. If the appropriate conditions apply all operations are full database backups. Then all of the databases are snapped and backed up as a group. When this action happens, the progress log displays the backup image name as well as the storage image for each database in the group.
Restoring a database backed up in a group

A database that is backed up in a group can be restored like any other database.

See “Restoring a SQL Server database backup” on page 71.

When you launch the restore operation, note that the batch file specifies the storage image name and the backup image name.

See Figure 8-4 on page 109.
Figure 8-4  Batch file shown in the progress report for the restore operation

Storage image name and backup image name are shown when restoring from a grouped backup.
This chapter includes the following topics:

- About protecting SQL Server availability groups
- Protecting SQL Server availability groups with intelligent policies
- Protecting SQL Server availability groups with legacy policies
- Protect a SQL Server availability group that crosses NetBackup domains
- Browsing for SQL Server availability group backup images
- Restoring a SQL Server availability database to a secondary replica
- Restoring a SQL Server availability database to the primary and the secondary replicas
- Restoring an availability database when an availability group crosses NetBackup domains

**About protecting SQL Server availability groups**

NetBackup for SQL Server supports backups and restores of SQL Server Always On and read-scale availability groups. For information on supported versions and environments, see the Application/Database Agent Compatibility List.

You can protect an availability group environment in the following ways:

- With a policy that protects the preferred or the primary replica.
If an availability group crosses multiple NetBackup domains, you can use Auto Image Replication (A.I.R.) to replicate the backup to the other NetBackup domains. See “Protect a SQL Server availability group that crosses NetBackup domains” on page 126.

Note the following before you configure the policy:

- NetBackup can only fully protect the availability group environment if each replica on which backups occur is registered with credentials.
- NetBackup runs a backup job on each replica in the availability group. On the replicas which are not the backup source, the job skips the backup.

Limitations

Note the following limitations for backups of availability groups:

- NetBackup does not support the following types of backups for availability databases:
  - Snapshot backups of filegroups or files
  - Instant Recovery backups
  - VMware backups
  - (Legacy policies) A grouped snapshot backup that includes databases in more than one availability group or in both availability databases and standard databases
  - (Intelligent Policies) A grouped snapshot backup
  - Backups of non-readable secondary replicas
    NetBackup can only back up databases in a replica when you allow user connections for the replica.
    If a secondary replica is the preferred replica and it is non-readable, the backup fails. If a secondary replica is not the preferred replica, NetBackup skips the backup of that replica.

SQL Server does not support the following types of backups on a secondary replica:

- Full backups
  If a full backup takes place on a secondary replica, NetBackup converts the full backup to a copy-only backup.
- Differential backups
  Backups of this type result in a failed backup.
- Copy-only transaction log backups
Protecting SQL Server availability groups with intelligent policies

You can protect an availability group environment in the following ways:

- With an intelligent policy that protects the preferred or the primary replica.
- If an availability group crosses multiple NetBackup domains, you can use Auto Image Replication (A.I.R.) to replicate the backup to the other NetBackup domains. See “Protect a SQL Server availability group that crosses NetBackup domains” on page 126.
- NetBackup supports backups of availability groups in multi-NIC environments. For more information, see the following topic: See “About configuration of SQL Server backups with multiple NICs” on page 177.

Prerequisites for protecting SQL Server availability groups

Before you configure protection for availability groups, review and complete the following prerequisites. Perform the steps after you create the SQL Server availability group.

See Table 9-1

Table 9-1 Prerequisites for protecting the preferred or the primary replica in an availability group

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Register the credentials for the availability replicas.</td>
<td>See “Registering a SQL Server instance or availability replica” on page 27.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Review the mappings for the hosts in your environment.</td>
<td>Approve each valid Auto-Discovered Mapping that NetBackup discovers in your environment. Perform this configuration in the Host Management properties on the master server. See “Reviewing the auto-discovered mappings in Host Management” on page 57.</td>
</tr>
</tbody>
</table>
Table 9-1  Prerequisites for protecting the preferred or the primary replica in an availability group (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Configure the mappings for distributed application restores.</td>
<td>For basic and advanced availability groups, map the WSFC (Windows Server Failover Cluster) name to each availability group node. If you have an availability group with an FCI, you must configure additional mappings. Configure these mappings in the <strong>Distributed Application Restore Mapping</strong> host property on the master server. See “Configuring mappings for restores of a distributed application, cluster, or virtual machine” on page 56.</td>
</tr>
</tbody>
</table>

Configuring a backup policy to protect a SQL Server availability group

You can create a backup policy to perform scheduled backups of a SQL Server availability group. By default, NetBackup performs backups on the primary replica. Alternatively, you can protect the preferred replica.

**To configure a backup policy for the preferred or the primary replica of a SQL Server availability group**

1. Open the NetBackup Administration Console.
2. Create a new policy.
3. On the **Attributes** tab, configure the following:
   - Select the **MS-SQL-Server** policy type.
   - Specify a storage unit.
   See “About policy attributes” on page 38.
4. Click on the **Instances and Databases** tab.
5. Select **Protect availability groups**.
   See “About tuning parameters for SQL Server backups” on page 49.
6. Click **New**.
7. Select the availability groups or availability databases that you want to protect.
   See “Adding an availability group to a policy” on page 114.
   See “Adding availability databases to a policy” on page 115.
8. Add schedules.
   See “About schedule properties” on page 39.
9 Click the **Microsoft SQL Server** tab.

10 From the **Availability Database Backup Preference** list, choose one of the following:

- **Protect primary replica**
- **Protect preferred replica**

  See “About tuning parameters for SQL Server backups” on page 49.

11 (Optional) Make any other changes to the tuning parameters.

  See “About tuning parameters for SQL Server backups” on page 49.

12 Click **OK** to save the policy.

### Adding an availability group to a policy

This topic describes how to add availability groups to a policy when you choose the **Protect availability groups** option.

#### To add an availability group to a policy

1 On the **Instances and Databases** tab, click **Protect availability groups**.

2 Click **New**.

   All availability groups that you registered are displayed.

3 In the left pane, select the **Availability Groups** node.
4 In the right pane, select the check box next to each availability group that you want to add to the list.

![Select Availability Groups and Databases](image)

5 Click **OK**.

When you select an availability group, all databases in the availability group are included in the backup.

The objects you select in the backup selections list apply only to the availability groups or availability databases that you add to the list on this tab.

![Protecting SQL Server availability groups with intelligent policies](image)

### Adding availability databases to a policy

This topic describes how to add availability databases to a policy when you choose the **Protect availability groups** option. You can also add availability groups to the same policy. If you want to back up databases outside the availability group, you must create a different policy for those databases.

**To add availability databases to a policy**

1 On the **Instances and Databases** tab, click **Protect availability groups**.
2 Click **New**.

   All availability groups that you registered are displayed.

3 In the left pane, expand the node for the availability group that contains the databases that you want to protect.

4 In the left pane, select a replica.
5  In the right pane, check the check box next to each database that you want to add to the list.

When you select individual databases, you must manually add any new databases in your environment to a policy. In this case, NetBackup does not dynamically create a list of databases at run-time.

6  Click OK.

The objects you select in the backup selections list apply only to the availability groups or availability databases that you add to the list on this tab.

Adding filegroups or files in an availability database to the backup selections list

This topic describes how to browse for filegroups or files, which are part of an availability group, that you want to add to the backup selections list.

To add filegroups or files in an availability group to the backup selections list

1  Open the policy you want to edit or create a new policy.
2  On the Backup Selections tab, select Filegroups or Files.
3  In the left pane, expand the availability group and select the replica.
4 In the right pane select the filegroups or files.

5 Click **OK** to add the filegroups or files that you selected to the backup selections list.

**Note:** When you add a filegroup or file to the backup selections list, NetBackup backs up that object for all databases in the policy that contain a filegroup or file with that name.

### Protecting SQL Server availability groups with legacy policies

You can use legacy policies to protect an AG environment in the following ways:

- With a policy that protects the preferred replica.
- With a policy that protects a specific node in the AG.
- If an AG crosses multiple NetBackup domains, you can use Auto Image Replication (A.I.R.) to replicate the backup to the other NetBackup domains. See “Protect a SQL Server availability group that crosses NetBackup domains” on page 126.
- NetBackup supports backups of AGs in multi-NIC environments. For more information, see the following topic:
  See “About configuration of SQL Server backups with multiple NICs” on page 177.
About protecting the preferred replica in a SQL Server availability group (legacy backup policies)

You can use a SQL Server Intelligent Policy to protect the preferred or primary replica in a SQL Server availability group. Note the following before you configure the policy:

- To protect the preferred replica, use the `PREFERREDREPLICA PREFERRED` keyword. NetBackup honors your SQL Server backup preferences. These preferences include the preferred replica, backup priority, and excluded replicas. NetBackup backs up the preferred replica, as determined by SQL Server.

- To protect the primary replica, use the `PREFERREDREPLICA PRIMARY` keyword.

- NetBackup can only fully protect the availability group environment if the backup policy includes each replica on which backups occur in the Clients list. Also, all batch files in the Backup Selections list must exist on each replicas on which backups occur.

- Note that a backup job runs on each replica in the availability group. On replicas which are not the backup source, the job skips the backup.

- Review the information on support and limitations for availability groups. See “About protecting SQL Server availability groups” on page 110.

- Review the prerequisites for protecting the availability group. See “Prerequisites for protecting SQL Server availability groups” on page 112.

Prerequisites for protecting SQL Server availability groups

Before you configure policies to protect availability groups with legacy policies, review and complete the following prerequisites. Perform the steps after you create the SQL Server availability group.

See Table 9-2

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>On each replica where you want backups to occur, configure the NetBackup services.</td>
<td>See “Configuring the NetBackup services for SQL Server backups and restores (legacy SQL Server policies)” on page 138.</td>
</tr>
</tbody>
</table>
### Configuring a backup policy for the preferred or the primary replica of a SQL Server availability group

This topic describes how to create a backup policy for automatic (scheduled) backups of the preferred or the primary replica in a SQL Server availability group. Create a policy for each type of backup that you want to perform. For example:

<table>
<thead>
<tr>
<th>Policy</th>
<th>Schedules</th>
<th>Backup Selections</th>
<th>Clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy A</td>
<td>Full backup, run weekly</td>
<td>Batch file for full backups</td>
<td>Node A, Node B, Node C</td>
</tr>
<tr>
<td>Policy B</td>
<td>Differential backup, run daily</td>
<td>Batch file for differential backups</td>
<td>Node A, Node B, Node C</td>
</tr>
<tr>
<td>Policy C</td>
<td>Full backup, run per your RTO and RPO</td>
<td>Batch file for transaction log backups</td>
<td>Node A, Node B, Node C</td>
</tr>
</tbody>
</table>
To configure an automatic backup policy for the preferred or the primary replica of a SQL Server availability group

1. Log on to the master server as administrator (Windows) or root (UNIX).
2. Open the NetBackup Administration Console.
3. Select **Actions > New > Policy**.
4. In the **Policy name** box, type a unique name for the new policy and click **OK**.
5. On the **Attributes** tab, configure the following:
   - Select the **MS-SQL-Server** policy type.
   - Specify a storage unit.
   
   See “About policy attributes” on page 38.

6. On the **Instances and Databases** tab, select **Clients for use with batch files**.
   
   The tab name changes to **Clients** and the **Backup Selections** tab now lets you specify and browse for scripts.

7. On the **Schedules** tab, add a **Full Backup** schedule.
   
   NetBackup also creates a Default-Application-Backup schedule. Use this schedule to set the retention level for the policy. See the **NetBackup Administrator’s Guide** for more information.
   
   See “About schedule properties ” on page 155.

8. On the **Clients** tab, add the name of each replica on which you want backups to occur.
   
   Use the NetBackup client name for each replica. If a replica is hosted on a failover cluster instance (FCI), use the virtual cluster instance name.

9. Repeat step 3 to Configuring an automatic backup policy for the preferred or the primary replica of a SQL Server availability group in this procedure to create a policy for each type of backup (full, differential, transaction log) that you want to perform.
   
   Each type of backup requires a separate policy.

10. On each replica where you want to perform backups, create a batch file for each type of backup that you want to perform.

    See “Creating batch files for the policy that protects the preferred or the primary replica” on page 121.
Creating batch files for the policy that protects the preferred or the primary replica

This topic describes how to create batch files for the backup policies that protect the availability group. These batch files can use either the `PREFERREDREPLICA` or `PREFERREDREPLICA PRIMARY` to protect either the preferred or the primary replica.

To create the batch files for an availability group, you must log on to each replica separately. Then use the NetBackup MS SQL Client to create the batch files on each replica.

To create batch files for the policy that protects the preferred replica

1. This procedure assumes that you already created a separate policy for each type of backup that you want to perform.
   
   See "Configuring an automatic backup policy for the preferred or the primary replica of a SQL Server availability group" on page 119.

2. Perform steps 3 to 14 in this procedure on each replica in the availability group.
   
   You must log on to each replica separately and create the batch files from that replica. This way the batch files have the correct settings for each node.
   
   Backups may fail if you create a batch file on one replica and copy it to the other replicas in the availability group.

3. Log on to one of the replicas in the availability group.

4. Open the NetBackup MS SQL Client.

5. Select File > Set SQL Server connection properties.

6. From the Instance drop-down list, select the instance that hosts the availability group.

7. Select File > Backup SQL Server objects.

8. Select the objects you want to backup in one of the following ways:

   - Select one or more databases, filegroups, or files.

   - To back up all databases, including the system databases (DATABASE $ALL), select the instance. From the Back up group, select All.

9. Select the Type of Backup and any other settings.

10. In the NetBackup Policy field, enter the name of the MS-SQL Server policy that you created.

11. From the Backup script group, select Save.

12. Click Backup and open the batch file.
13 For each operation in the batch file configure one of the following options:

- To protect the preferred replica, add the keyword `PREFERREDREPLICA PREFERRED`.
- To protect the primary replica, add the keyword `PREFERREDREPLICA PRIMARY`.

14 Save and close the batch file.
Note the location of the batch file. Save the batch file for each replica to the same file location. This way you only need to enter one file location for the batch file in the **Backup Selections** list.

15 Repeat steps 7 to 14 for any other types of backups that you want to perform. For example, full, differential, or transaction log.

More information is available on how to create batch files.
See “About using batch files with NetBackup for SQL Server” on page 140.

16 Repeat the steps in this procedure (steps 3 to 15) to create batch files for the other availability group replicas.

17 When you have created batch files for all the replicas on which you want backups to occur, add the batch files to the policies that you created previously.

See “Adding the batch files to the policy that protects the preferred or the primary replica” on page 122.

---

**Adding the batch files to the policy that protects the preferred or the primary replica**

This topic describes how to add the batch files that you created to the backup policy that protects the preferred or the primary replica in the availability group.

**To add the batch files to the policy that protects the preferred or the primary replica**

1 This procedure assumes that you already created a policy. It also assumes that you created batch files on each replica on which you want backups to occur.

See “Configuring an automatic backup policy for the preferred or the primary replica of a SQL Server availability group” on page 119.

See “Adding the batch files to the policy that protects the preferred or the primary replica” on page 122.

2 Open the policy that you created.
On the Backup Selections tab, add the batch files that you created. If you saved the batch files to the same location on each replica, you need only one entry in the Backup Selections list. Include batch files for only one type of backup in this policy. (For example, full, differential, or transaction log.)

Click OK to save the policy.

Repeat the steps in this procedure for each policy that you created.

About protecting a specific node in a SQL Server availability group (legacy backup policies)

This topic describes how to protect a specific node in a SQL Server availability group using a legacy SQL Server policy.

Note the following when you configure a NetBackup policy to protect a specific node in an availability group:

- For this backup scenario, do not use the PREFERREDREPLICA TRUE, PRIMARY, or PREFERRED keyword in your batch files. Backups are skipped if the backup policy does not include the node that hosts the preferred replica.

- Review the information on support and limitations for AGs. See “About protecting SQL Server availability groups” on page 110.

Configuring an automatic backup policy for a specific replica of a SQL Server availability group

This topic describes how to create a backup policy for automatic (scheduled) backups of a specific replica in a SQL Server availability group. Create a policy for each type of backup that you want to perform. For example:

Policy A  Schedules: Full backup, run weekly
Backup Selections: Batch file for full backups
Clients: Node A

Policy B  Schedules: Full backup, run daily
Backup Selections: Batch file for full differential backups
Clients: Node A

Policy C  Schedules: Full backup, run per your RTO and RPO
Backup Selections: Batch file for transaction log backups
Clients: Node A
To configure an automatic backup policy for a specific replica of a SQL Server availability group

1. Open the NetBackup Administration Console.
2. Select **Actions > New > Policy**.
3. In the **Policy name** box, type a unique name for the new policy and click **OK**.
4. On the **Attributes** tab, configure the following:
   - Select the **MS-SQL-Server** policy type.
   - Specify a storage unit.
   
   See “About policy attributes” on page 38.
5. On the **Instances and Databases** tab, select **Clients for use with batch files**.

   The tab name changes to **Clients** and the **Backup Selections** tab now lets you specify and browse for scripts.
6. On the **Schedules** tab, add a **Full Backup** schedule.

   NetBackup also creates a Default-Application-Backup schedule. Use this schedule to set the retention level for the policy. See the NetBackup Administrator’s Guide for more information.

   See “About schedule properties ” on page 155.
7. On the **Clients** tab, add the name of the replica that you want to protect.

   Use the NetBackup client name for the replica. If a replica is hosted on a failover cluster instance (FCI), use the virtual cluster instance name.
8. Click **OK** to save the policy.
9. Repeat the step 2 through step 8 in this procedure to create a policy for each type of backup (full, full differential, transaction log) that you want to perform.

   Each type of backup requires a separate policy.
10. Create a batch file for each type of backup that you want to perform with each policy.

    See “Creating a batch file for the policy that protects a specific availability replica in an availability group” on page 124.

### Creating a batch file for the policy that protects a specific availability replica in an availability group

This topic describes how to create batch files for the backup policies that protect a specific availability replica in the availability group.
To create batch files for the policy that protects a specific replica

1. This procedure assumes that you already created a policy.
   See “Configuring an automatic backup policy for a specific replica of a SQL Server availability group” on page 123.

2. Log on to the availability replica you want to protect.

3. Open the NetBackup MS SQL Client.

4. Select File > Set SQL Server connection properties.

5. From the Instance drop-down list, select the instance that hosts the availability group.


7. Select the objects you want to backup in one of the following ways:
   - Select one or more databases, filegroups, or files.
   - To back up all databases, including the system databases (DATABASE $ALL), select the instance. From the Backup group, select All.

8. Select the Type of Backup and any other settings.

9. In the NetBackup Policy field, enter the name of the MS-SQL Server policy that you created.

10. From the Backup script group, select Save.

11. Click Backup and save the batch file.

   Do not use the PREFERREDREPLICA TRUE, PRIMARY, or PREFERRED keyword in your batch files. Backups are skipped if the backup policy does not include the node that hosts the preferred replica.

12. Repeat steps 6 to 11 for any other the types of backups that you want to perform. For example, full, full differential, or transaction log.

   More information is available on how to create batch files.

   See “About using batch files with NetBackup for SQL Server” on page 140.

13. When you have created all the batch files, add these files to the policies that you created previously.

   See “Adding the batch files to the policy that protects a specific replica in the availability group” on page 126.
Adding the batch files to the policy that protects a specific replica in the availability group

To add the batch files to the policy that protects a specific replica in the availability group

1. This procedure assumes that you already created a policy and created batch files for a specific replica in the AG.
   
   See “Configuring an automatic backup policy for a specific replica of a SQL Server availability group” on page 123.

   See “Creating a batch file for the policy that protects a specific availability replica in an availability group” on page 124.

2. Open the policy that you created.

3. On the Backup Selections tab, add the batch file(s) that you created.

   Include batch files for only one type of backup in this policy. (For example, full, full differential, or transaction log.)

4. Click OK to save the policy.

5. Repeat the steps in this procedure for each policy that you created.

Protect a SQL Server availability group that crosses NetBackup domains

When you have an availability group that crosses NetBackup domains, you can use Auto Image Replication (A.I.R.) to replicate backup images to another NetBackup domain. The following configuration requirements exist:

- Configure the storage in the NetBackup source and target domains:
  - For OpenStorage, a disk appliance of the same type in each domain. The disk appliance type must support NetBackup Auto Image Replication (A.I.R.).
  - For NetBackup deduplication, the storage that NetBackup can use for a Media Server Deduplication Pool in each domain.

- Configure the domain where the backups occur as the source domain. Then configure the domain where you want to restore the backups as the target domain.

Additional resources

NetBackup Administrator’s Guide, Volume I

NetBackup Deduplication Guide
Browsing for SQL Server availability group backup images

This procedure describes how to browse for backup images of availability groups. When you have displayed the backup images you want, then follow the instructions for restoring a specific SQL Server object.

To browse for availability group backup images

1. Select File > Restore SQL Server objects.
2. Select the SQL Host whose backup images you want to browse, or type its name.
3. Select or type the full qualified domain name for the Source Client.
   - For an advanced or a basic availability group, provide the name of the Windows Server Failover Clustering (WSFC) cluster. You can find the cluster name in Failover Cluster Manager or the job details for the backup.
   - For a read-scale availability group, provide the host name of the replica.
4. (Optional) In the Database name filter box, provide a keyword or query to match databases with that name. Filtering on the database name can significantly reduce the time it takes for NetBackup to return the list of backup images.
5. Select the date range to search.
6. Click OK.
7. Continue with the applicable instructions for how to restore the object(s).

See “Restoring a SQL Server availability database to the primary and the secondary replicas” on page 129.

See “Restoring a SQL Server availability database to a secondary replica” on page 128.
Restoring a SQL Server availability database to a secondary replica

This procedure describes how to restore a SQL Server availability database to a secondary replica. Follow this procedure if a secondary replica is unavailable for an extended time and needs to be synchronized with the primary. Or follow these instructions after you add a new secondary replica to the availability group.

To restore any system databases or user databases in the backup, perform a separate browse and restore operation using the replica name.

**To restore a SQL Server availability database to a secondary replica**

1. Log on to the node that hosts the secondary replica.
2. Close any connections to the database on the secondary replica.
3. Remove the secondary database from the availability group.
4. In the NetBackup MS SQL Client, select *File > Set SQL Server connection properties*.
5. From the *Instance* list, select the instance that hosts the availability group.
6. Browse for the backup images you want to restore. Select the latest full backup image and transaction log backups.
   - See “Browsing for SQL Server availability group backup images” on page 127.
7. Select the following settings:
   - From the *Recovery* list, select *Not recovered*.
   - Select *Use replace option*.
8. If the replicas in the availability group use different paths for the database file, you need to create a move template to restore to a secondary replica. From the *Scripting* list, choose *Create a move template*.
   - See “Performing a SQL Server database move” on page 75.
9. Click *Restore*.
10. When the restore completes, join the database to the availability group.
Restoring a SQL Server availability database to the primary and the secondary replicas

In some situations you may need to restore the SQL Server availability databases to both the primary and the secondary replicas. These situations can include when you restore databases:

- Following a disaster recovery
- After logical corruption of the databases
- To a clone of an availability group or test environment
- To an earlier point in time

You may want to perform this restore for the primary database in parallel with the restores for the secondary databases.

To restore any system databases or user databases in the backup, perform a separate browse and restore operation using the replica name.

To restore a SQL Server availability database to the primary and the secondary replicas

1 Log on to the host of the primary replica.
2 Open SQL Server Management Studio and perform the following tasks:
   - Suspend data movement on the database.
   - Remove the database from the availability group.
3 Close any connections to the database.
4 Remove the primary database from SQL Server.
5 In the NetBackup MS SQL Client, select File > Set SQL Server connection properties.
6 From the Instance list, select the instance that hosts the availability group.
7 Browse for the backup images you want to restore. Select the latest full backup image and transaction log backups.
   - See "Browsing for SQL Server availability group backup images" on page 127.
8 Select the following settings:
   - Select Use replace option.
   - From the Recovery list, select Recovered.
9 Click Restore.
10 When the restore completes, add the database to the availability group using the **Skip initial data synchronization** option.

11 Log on to the host of the secondary replica and complete the following steps:
   - Close any connections to the database on the secondary replica.
   - Remove the secondary database from SQL Server.

12 In the NetBackup MS SQL Client, select **File > Set SQL Server connection properties**.

13 From the **Instance** list, select the instance that hosts the availability group.

14 Browse for the backup images you want to restore. Select the same set of images that you restored to the primary replica.

   See “[Browsing for SQL Server availability group backup images](#)” on page 127.

15 Select the following settings:
   - From the **Recovery** list, select **Not recovered**.
   - Select **Use replace option**.

16 If the replicas in the availability group use different paths for the database file, you need to create a move template to restore to a secondary replica. From the **Scripting** list, choose **Create a move template**.

   See “[Performing a SQL Server database move](#)” on page 75.

17 Click **Restore**.

18 When the restore completes, join the database to the availability group.

19 Repeat step 11 through step 18 for additional replicas in the availability group.

---

**Restoring an availability database when an availability group crosses NetBackup domains**

To restore an availability group database that was backed up by an AG node in another NetBackup domain, you must first configure NetBackup for Auto Image Replication (A.I.R.). The backup must complete and be replicated to the target replicas. Once the backup is replicated, you can perform a restore on a target replica in the same way as you perform any other restore of availability group databases.

---

**Note:** Replication may not occur immediately to the target availability group replicas. The time it takes for replication to occur is dependent on the settings for each master server.
See “Protect a SQL Server availability group that crosses NetBackup domains” on page 126.

See “Restoring a SQL Server availability database to a secondary replica” on page 128.

See “Restoring a SQL Server availability database to the primary and the secondary replicas” on page 129.
Protecting SQL Server in a cluster environment

This chapter includes the following topics:

- Configuring backups of clustered SQL Server instances (SQL Server Intelligent Policy)
- Configuring backups of clustered SQL Server instances (legacy SQL Server policies)
- Performing a restore of a virtual SQL Server instance

Configuring backups of clustered SQL Server instances (SQL Server Intelligent Policy)

This procedure describes how to protect SQL Server clustered instances with a SQL Server Intelligent Policy. Perform these steps after you create the virtual SQL Server (VIRTUALSERVER). The following actions must be performed on the master server or on a NetBackup remote client console that acts for the master server.

If you have a SQL Server cluster with multiple NICs, you must follow a different procedure.

See "Configuring backups of a SQL Server cluster when you have multiple NICs (SQL Server Intelligent Policies)" on page 183.

To configure backups of clustered SQL Server instances (SQL Server Intelligent Policy)

1. Open the NetBackup Administration Console.
2. Create a policy (for example, VIRTSQLPOLICY).
3. On the Attributes tab, configure the following:
Select the MS-SQL-Server policy type.

Specify a storage unit. If you use a virtual media server, then specify a storage unit that belongs to the virtual media server.

4 On the Instances and Databases tab, select Protect instances.

See “Adding instances to a policy” on page 42.

5 Add the instances or databases that you want to protect.

See “Adding instances to a policy” on page 42.

See “Adding databases to a policy” on page 43.

See “Adding instance groups to a backup policy” on page 48.

For a clustered instance, the host name is the virtual name of the SQL Server cluster.

6 Add other policy information as follows:

- Add schedules.
  
  See “About schedule properties” on page 39.

- (Optional) Select the specific filegroups or files that you want to back up. By default, NetBackup backs up an entire database.
  
  See “Adding filegroups or files to the backup selections list” on page 46.

- (Optional) Make changes to any tuning parameters.
  
  See “About tuning parameters for SQL Server backups” on page 49.

7 Map the virtual name of the SQL Server cluster to each node in the cluster.

Configure these mappings in the Distributed Application Restore Mapping host property on the master server.

See “Configuring mappings for restores of a distributed application, cluster, or virtual machine” on page 56.

8 Configure the Mapped Host Names for the SQL Server hosts in your environment.

Configure this property in Host Management on the master server.

See “Reviewing the auto-discovered mappings in Host Management” on page 57.
Configuring backups of clustered SQL Server instances (legacy SQL Server policies)

This procedure describes how to protect SQL Server clustered instances with a legacy policy that uses batch files and clients. Perform these steps after you create the virtual SQL Server (VIRTUALSERVER). The following actions must be performed on the master server or on a NetBackup remote client console that acts for the master server.

If you have a SQL Server cluster with multiple NICs, you must follow a different procedure.

See “Configuring backups of a SQL Server cluster when you have multiple NICs (legacy SQL Server policies)” on page 184.

To configure backups of clustered SQL Server instances

1. Open the NetBackup Administration Console.
2. Create a policy (for example, VIRTSQLPOLICY).
3. On the Attributes tab, configure the following:
   - Select the MS-SQL-Server policy type.
   - Specify a storage unit. If you use a virtual media server, then specify a storage unit that belongs to the virtual media server.
4. On the Instances and Databases tab, select Clients for use with batch files.
5. On the Schedules tab, add an automatic backup schedule.
6. On the Clients tab, add the virtual SQL Server name (VIRTUALSERVER).
7. On the Backup Selections tab, add one or more script names (batch files).
8. Map the virtual name of the SQL Server cluster to each node in the cluster.
   Configure these mappings in the Distributed Application Restore Mapping host property on the master server.
   See “Configuring mappings for restores of a distributed application, cluster, or virtual machine ” on page 56.
9. Configure the Mapped Host Names for the SQL Server hosts in your environment.
   Configure this property in Host Management on the master server.
   See “Reviewing the auto-discovered mappings in Host Management” on page 57.
Performing a restore of a virtual SQL Server instance

This procedure describes how to perform a restore of a virtual SQL Server instance.

To perform a restore on a virtual SQL Server instance

1. Open the NetBackup MS SQL Client on the active node.
2. Select File > Restore SQL Server objects.
3. In the SQL Host list, select the virtual server name (VIRTUALSERVER) of the SQL Server.
4. Click OK.
5. Select a backup image or staged image list.
6. Click OK.
This chapter includes the following topics:

- About legacy SQL Server policies
- About configuring backups with legacy SQL Server policies
- Configuring the NetBackup services for SQL Server backups and restores (legacy SQL Server policies)
- About SQL Server security with NetBackup legacy backup policies
- About using batch files with NetBackup for SQL Server
- Adding a new SQL Server legacy policy
- About schedule properties
- Adding clients to a policy
- Adding batch files to the backup selections list
- Selecting the SQL Server host and instance
- Options for SQL Server backup operations
- About viewing the properties of the objects selected for backup
About legacy SQL Server policies

A legacy NetBackup for SQL policy includes a list of SQL Server database clients and a batch file that contains SQL Server backup commands. When a backup is scheduled, NetBackup runs the commands in the batch file for each client in the policy. You create the batch file through the NetBackup MS SQL Client interface, which saves the options you select to a batch file. Or you can create this batch file manually.

The legacy SQL Server policy includes the following criteria:

- Storage unit and media to use
- Policy attributes
- Backup schedules: Automatic schedule (called Full Backup) and application schedule
- Clients to be backed up
- Backup batch files to be run on the clients

About configuring backups with legacy SQL Server policies

Table 11-1  Steps to configure SQL Server backups that use legacy SQL Server policies

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Configure the logon account for the NetBackup services.</td>
<td>The logon account for the NetBackup Client Service and the NetBackup Legacy Network Service must meet certain requirements. See “Configuring the NetBackup services for SQL Server backups and restores” on page 25.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Configure the batch files for the policy.</td>
<td>See “About using batch files with NetBackup for SQL Server” on page 140.</td>
</tr>
</tbody>
</table>
### Configuring the NetBackup services for SQL Server backups and restores (legacy SQL Server policies)

NetBackup uses the NetBackup Client Service and the NetBackup Legacy Network Service to access the SQL Server when it performs backups and restores. With the proper configuration, these services can log on with the Local System account or another account that has the necessary privileges.

The logon account for the services requires the following:

- Both services must use the same logon account.
- The SQL Server "sysadmin" role.
- Apply the sysadmin role manually to the NT AUTHORITY\SYSTEM or the BUILTIN\Administrators group.
- For a SQL Server cluster or SQL Server availability group (AG), configure the NetBackup services on each node in the cluster or AG.
- For VMware backups, different configuration is required for logon account for the services.
  
  See “Configuring the NetBackup services for a VMware backup that protects SQL Server” on page 91.

#### To configure the NetBackup services for SQL Server backups and restores

1. Log on to the Windows host with the account that has the sysadmin role.
2. If the SQL Server instance uses standard or mixed security, perform the following steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Configure a legacy SQL Server policy.</td>
<td>See “Adding a new SQL Server legacy policy” on page 154.</td>
</tr>
<tr>
<td>Step 4</td>
<td>If you have a SQL Server AG or cluster, you must configure the mappings for distributed application restores.</td>
<td>See “Configuring mappings for restores of a distributed application, cluster, or virtual machine “ on page 56.</td>
</tr>
<tr>
<td>Step 5</td>
<td>If you have a SQL Server AG or cluster, you must review the auto-discovered mappings for the hosts in your environment.</td>
<td>See “Reviewing the auto-discovered mappings in Host Management” on page 57.</td>
</tr>
</tbody>
</table>
Open the NetBackup MS SQL Client.

Select File > Set SQL Server connection properties.

Provide the SQL Server Userid and Password.

Click Apply > Close.

3 In the Windows Services application, open the NetBackup Client Service entry and click the Log On tab.

4 Confirm that Local System account is selected.

If you selected a different logon account, stop and restart the service.

5 Open the NetBackup Legacy Network Service entry and click the Log On tab.

6 Confirm that Local System account.

If you selected a different logon account, stop and restart the service.

About SQL Server security with NetBackup legacy backup policies

NetBackup for SQL Server uses SQL Server backup and restore commands and queries the SQL master database. These operations are validated according to the security method you choose when you install SQL Server, either integrated security or standard security. Integrated security refers to the use of Windows authentication in lieu of standard SQL Server-based logons.

Note: Microsoft recommends using integrated security. Unlike SQL Server-based logons, Windows logons can be traced with standard Windows security tools. NetBackup for SQL Server supports both integrated security and standard security for any level of SQL Server.

If you use integrated security, the Windows account you log into is used for authentication. SQL Server ignores any user ID and password that you enter in the NetBackup MS SQL Client or in a batch file.

If you use standard security, then you must supply a SQL Server-based user ID and password. Once you provide these credentials, NetBackup stores this information in the registry (the password is encrypted) under the following registry key:

HKEY_CURRENT_USER\SOFTWARE\VERITAS\NETBACKUP\NetBackup for Microsoft SQL Server\
About using batch files with NetBackup for SQL Server

NetBackup for SQL Server uses batch files to initiate backup and restore operations. A batch file uses the `.bch` extension and is typically executed from the `install_path\DbExt\MsSql\` directory.

You must create a batch file if you start operations in any of the following ways:

- Manage Scripts dialog box
- `dbbackex` command line
- Automatically scheduled backups that use batch files and clients

## Rules for using batch files

Review the following information before you create and use batch files:

- Ensure that the batch file resides on the client.
  
  See “Registering authorized locations used by a NetBackup database script-based policy” on page 219.

- Batch files are in Unicode text.

- A batch file consists of a series of operations that run in sequence. For legacy SQL Server backup policies, you create batch files for backup operations and restore operations. For SQL Server Intelligent Policy, you create the batch files for restore operations in the same way.

- Each operation consists of a series of `<keyword value>` pairs, which completely define the total operation.

- The keyword is not case-sensitive but the value is. Generally, you can code both the keyword and value in uppercase. The exception is the `NBIMAGE` keyword option. The value must be specified exactly as it appears in the NetBackup server.

- Operations are not nested.

- With the exception of the `BATCHSIZE`, `GROUPSIZE`, `RESTARTTYPE`, `NUMRESTARTS`, and `RESTARTWAITSECONDS` parameters, `<keyword value>` pairs are not global. If you use `BATCHSIZE`, `GROUPSIZE`, `RESTARTTYPE`, `NUMRESTARTS`, or `RESTARTWAITSECONDS` then it must appear only once in your batch file and it must appear in the first operation.

- If `SQLINSTANCE $ALL` is used, then it must appear in the first operation of the batch file. Each operation in the batch file is performed for all SQL Server
instances on the client where the batch file is executed. Also, it is not necessary to specify an SQLHOST or SQLINSTANCE on any subsequent operations.

- Within an operation, the <keyword value> pairs may appear in any order except that you must terminate each operation with ENDOPER TRUE.

- You can include comment lines in your batch file by placing a hash mark (‘#’) in the first column.

- STOPAT, RESTORETOMARK, RESTORETOMARKAFTERTIME, RESTOREBEFOREMARK, and RESTOREBEFOREMARKAFTERTIME are mutually exclusive restore parameters. If either RESTORETOMARKAFTERTIME or RESTOREBEFOREMARKAFTERTIME are used, then the batch file must also specify a datetime string with the keyword STOPAFTER.

- If you remove the MAXTRANSFERSIZE keyword from the batch file, the default is 0 or a maximum transfer size of 64 KB. If you remove the BLOCKSIZE keyword from the batch file, the default is 0 or a block size of .5 KB. A default value of 0 is also applied if you manually create a batch file without these keywords.

### Keywords and values used in batch files

See “Creating a batch file” on page 153.

See “About using batch files with NetBackup for SQL Server” on page 140.

Table 11-2 describes the keywords and values that can be used in batch files.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Values</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTCLIENT (Same as BROWSECLIENT)</td>
<td>string</td>
<td>no</td>
<td>none</td>
<td>Restores the images from a host other than the local host.</td>
</tr>
<tr>
<td>BACKUPMODEL</td>
<td>BACKUPMODEL_CONVENTIONAL, BACKUPMODEL_SNAPSHOT</td>
<td>no</td>
<td>BACKUPMODEL_CONVENTIONAL</td>
<td>Valid only for restore. Indicates whether the backup was originated from a snapshot method</td>
</tr>
<tr>
<td>BATCHSIZE</td>
<td>integer</td>
<td>no</td>
<td>1</td>
<td>Number of backup operations to start simultaneously, per database instance. Applies to all of the operations in the batch file. Must appear before the end of the first operation. Range is 1–32.</td>
</tr>
<tr>
<td>Keyword</td>
<td>Values</td>
<td>Required?</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>BLOCKSIZE</td>
<td>integer</td>
<td>no</td>
<td>0</td>
<td>Applicable for backup operations only. Block size is calculated as 512 bytes * 2^BLOCKSIZE. Range is 0–7.</td>
</tr>
<tr>
<td>BROWSECLIENT (Same as ALTC client)</td>
<td>string</td>
<td>no</td>
<td>none</td>
<td>Restores the images from a host other than the local host.</td>
</tr>
<tr>
<td>BUFFERS</td>
<td></td>
<td></td>
<td></td>
<td>See NUMBUFS.</td>
</tr>
<tr>
<td>CONSISTENCYCHECK</td>
<td>FULLINCLUDINGINDICES, FULLEXCLUDINGINDICES, PHYSICALCHECKONLY, CHECKCATALOG</td>
<td>no</td>
<td>none</td>
<td>Performs the specified consistency check after the restore has been completed.</td>
</tr>
</tbody>
</table>
| CONVERTBACKUP        | TRUE, FALSE                 | no        | FALSE   | If no previous full backup exists for the database or filegroup, then NetBackup converts the differential or log backup to a full backup.  
This option also detects if a full recovery database was switched to the simple recovery model and back to the full recovery model. In this scenario, the log chain is broken and SQL Server requires a differential backup before a subsequent log backup can be created. If NetBackup detects this situation, the backup is converted to a differential database backup.  
See “Converting differential backups to full backups” on page 157. |
Table 11-2  Keywords and values used in batch files (continued)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Values</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPYONLY</td>
<td>TRUE, FALSE</td>
<td>no</td>
<td>See description</td>
<td>If TRUE, SQL Server creates an out-of-band backup so that it does not interfere with the normal backup sequence. The default value is FALSE except for full database Instant Recovery backups. See “Using copy-only snapshot backups to affect how differentials are based” on page 104.</td>
</tr>
<tr>
<td>DATABASE</td>
<td>string</td>
<td>yes</td>
<td>none</td>
<td>Name of database. For backup operations, specify value $ALL to designate all databases (except for tempdb.)</td>
</tr>
<tr>
<td>DBMS</td>
<td>MSSQL</td>
<td>no</td>
<td>MSSQL</td>
<td>You can specify MSSQL only.</td>
</tr>
<tr>
<td>DSN</td>
<td>string</td>
<td>no</td>
<td>saved from GUI user session</td>
<td>ODBC data source name. Deprecated.</td>
</tr>
<tr>
<td>DUMPOPTION</td>
<td>INCREMENTAL</td>
<td>no</td>
<td>none</td>
<td>Specifies INCREMENTAL restoring from an incremental backup.</td>
</tr>
<tr>
<td>ENABLESERVICEBROKER</td>
<td>TRUE</td>
<td>no</td>
<td>none</td>
<td>Enables SQL Server Service Broker after a restore operation. To take effect, RECOVERED STATE must be set to RECOVERED. Include this keyword in each individual RESTORE operation.</td>
</tr>
<tr>
<td>ENDOPER</td>
<td>TRUE</td>
<td>yes</td>
<td>none</td>
<td>Terminates each operation that is specified in the batch file.</td>
</tr>
</tbody>
</table>
### Table 11-2  Keywords and values used in batch files (continued)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Values</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXCLUDE</td>
<td>string</td>
<td>no</td>
<td>none</td>
<td>Name of a database to exclude when DATABASE $ALL is specified in a batch operation. EXCLUDE can be used in a batch file only if DATABASE $ALL is used.</td>
</tr>
<tr>
<td>GROUPSIZE</td>
<td>integer between 1 and 32</td>
<td>no</td>
<td>none</td>
<td>The number of databases that are snapped as a single SQL Server backup image. (Legacy policies) For availability group backups, all databases in the grouped backup must be part of the availability group. NetBackup does not support any grouped snapshot backups that include both standard and availability databases. (Intelligent Policies) NetBackup does not support grouped snapshot backups.</td>
</tr>
<tr>
<td>INHIBITALTBUFFERMETHOD</td>
<td>TRUE, FALSE</td>
<td>no</td>
<td>FALSE</td>
<td>Tells NetBackup whether to consider the candidacy of alternate buffer method.</td>
</tr>
<tr>
<td>MAXRESTARTSETS</td>
<td>integer</td>
<td>no</td>
<td>none</td>
<td>Use MAXRESTARTSETS to enable file checkpointing. This parameter specifies the number of separate streams into which the backup request is sub-divided. Range is 2–32.</td>
</tr>
<tr>
<td>MAXTRANSFERSIZE</td>
<td>integer</td>
<td>no</td>
<td>0</td>
<td>Maximum transfer size is calculated as 64 kilobytes bytes * $2^{MAXTRANSFERSIZE}. Range is 0–6.</td>
</tr>
</tbody>
</table>
### Table 11-2

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Values</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVE</td>
<td>filegroup</td>
<td>no</td>
<td>none</td>
<td>Specifies a filegroup name. Used for the MOVE restore type. For any backups that were made with a SQL Server legacy policy, the PARTIAL restore type also applies.</td>
</tr>
<tr>
<td>NBIMAGE</td>
<td>string</td>
<td>yes*</td>
<td>none</td>
<td>Specifies a NetBackup image for the restore operations. See note for NBSERVER.</td>
</tr>
<tr>
<td>NBSCHED</td>
<td>string</td>
<td>no</td>
<td>none</td>
<td>If the NetBackup policy has several Application Backup Policy schedules, use NBSCHED to select amongst them.</td>
</tr>
<tr>
<td>NBSERVER</td>
<td>string</td>
<td>no</td>
<td>none</td>
<td>Specifies which master server to use for the backup or restore operation. <strong>Note:</strong> If NBSERVER is not specified in a batch file operation, the master server defaults to the name that is specified at HKEY_CURRENT_USER\Software\VERITAS\NetBackup\NetBackup for Microsoft SQL Server\DEFAULT_SQL_NB_MASTER_SERVER.</td>
</tr>
<tr>
<td>NUMBUFS</td>
<td>integer</td>
<td>no</td>
<td>1</td>
<td>Number of buffers per stripe. Range is 1–32.</td>
</tr>
<tr>
<td>NUMRETRIES</td>
<td></td>
<td></td>
<td></td>
<td>See NUMRESTARTS.</td>
</tr>
</tbody>
</table>
### Table 11-2  Keywords and values used in batch files (continued)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Values</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMRESTARTS</td>
<td>1-9</td>
<td>no</td>
<td>1</td>
<td>The number of times to retry a backup if RESTARTTYPE AUTO is specified. Use this keyword only once in the batch file and in the first operation of the batch file.</td>
</tr>
<tr>
<td>OBJECTNAME</td>
<td>string</td>
<td>yes*</td>
<td>none</td>
<td>Specifies a file or a filegroup name for file or for filegroup backups and restores, * If OBJECTTYPE= FILE or FILEGROUP.</td>
</tr>
<tr>
<td>OBJECTTYPE</td>
<td>DATABASE, TRXLOG, FILEGROUP, FILE</td>
<td>no</td>
<td>DATABASE</td>
<td>Specifies the object you want to back up or restore, a database, transaction log, filegroup, or file.</td>
</tr>
<tr>
<td>OPERATION</td>
<td>BACKUP, RESTORE</td>
<td>no</td>
<td>BACKUP</td>
<td>Type of operation, either backup or restore.</td>
</tr>
<tr>
<td>PAGE</td>
<td>Page ID</td>
<td>no</td>
<td>none</td>
<td>Ignored for a restore if the backup was performed with SQL Server Intelligent Policy. Specifies a page ID for a page restore operation.</td>
</tr>
<tr>
<td>PARTIAL</td>
<td>TRUE, FALSE</td>
<td>no</td>
<td>FALSE</td>
<td>Ignored for a restore if the backup was performed with SQL Server Intelligent Policy. Specifies NetBackup perform a partial backup or restore.</td>
</tr>
<tr>
<td>PASSWORD</td>
<td>string</td>
<td>no</td>
<td>null</td>
<td>Password for logging into SQL Server. This keyword is ignored if you use integrated security.</td>
</tr>
<tr>
<td>Keyword</td>
<td>Values</td>
<td>Required?</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PREFERREDREPLICA</td>
<td>NONE, PRIMARY,</td>
<td>no</td>
<td>PRIMARY</td>
<td>For each operation in the batch file, include this keyword.</td>
</tr>
<tr>
<td></td>
<td>PREFERRED, SKIP, TRUE,</td>
<td></td>
<td></td>
<td>(All NetBackup versions) TRUE honors your SQL Server backup preferences. FALSE indicates there is no preference for the replica that is used for backup.</td>
</tr>
<tr>
<td></td>
<td>FALSE</td>
<td></td>
<td></td>
<td>(NetBackup 8.2 and later clients)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NONE means the backup is performed on the specified instance. Use SKIP to ignore any availability databases on the instance. Use this value to protect only standard databases when the policy includes any instances that contain both standalone databases and availability databases.</td>
</tr>
<tr>
<td></td>
<td>PRIMARY, PREFERRED</td>
<td></td>
<td></td>
<td>PRIMARY and PREFERRED apply to availability replicas and to instances that have both standard and availability databases.</td>
</tr>
<tr>
<td></td>
<td>SKIP</td>
<td></td>
<td></td>
<td>PRIMARY means that the primary replica is used for backup. PREFERRED honors your SQL Server backup preferences. These preferences include the preferred replica, backup priority, and excluded replicas. Note that NetBackup initiates a backup job on each replica. The backup is skipped on any replica that isn't the intended backup source.</td>
</tr>
</tbody>
</table>

Table 11-2  Keywords and values used in batch files (continued)
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Values</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECOVERED STATE</td>
<td>RECOVERED, STANDBY, NOTRECOVERED, TRUE, FALSE</td>
<td>no</td>
<td>RECOVERED</td>
<td>RECOVERED means that the database should be restored to the recovered state. NOTRECOVERED means that it should remain in the loading state following the restore. STANDBY means that the database should be restored to standby state. If STANDBY is used, then the STANDBYPATH keyword is also required. TRUE and FALSE, when used as values for RECOVEREDSTATE, are synonyms for RECOVERED and NOTRECOVERED.</td>
</tr>
<tr>
<td>RESTARTTYPE</td>
<td>AUTO, MANUAL</td>
<td>no</td>
<td>none</td>
<td>Available only for backups. Use AUTO to automatically retry backup of failed objects. Use MANUAL to create a batch file for backing up any of the objects that were not successfully backed up. Use this keyword only once in the batch file and in the first operation of the batch file.</td>
</tr>
<tr>
<td>RESTARTWAITSECONDS</td>
<td>integer number</td>
<td>no</td>
<td>60</td>
<td>The time to make a second attempt following a backup failure. Use this keyword only once in the batch file and in the first operation of the batch file.</td>
</tr>
<tr>
<td>RESTOREBEFOREMARK</td>
<td>string</td>
<td>no</td>
<td>none</td>
<td>Specify transaction log mark.</td>
</tr>
<tr>
<td>RESTOREBEFOREMARK AFTERTIME</td>
<td>string</td>
<td>no</td>
<td>none</td>
<td>Specify transaction log mark.</td>
</tr>
<tr>
<td>RESTOREOPTION</td>
<td>REPLACE</td>
<td>no</td>
<td>none</td>
<td>Tells NetBackup to use the SQL Server replace option on a restore.</td>
</tr>
</tbody>
</table>
### Table 11-2  Keywords and values used in batch files (continued)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Values</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESTOREPAGES</td>
<td>TRUE, FALSE</td>
<td>no</td>
<td>FALSE</td>
<td>Ignored for a restore if the backup was performed with SQL Server Intelligent Policy. Specifies that NetBackup perform a page restore operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESTORETOMARK</td>
<td>string</td>
<td>no</td>
<td>none</td>
<td>Specify transaction log mark.</td>
</tr>
<tr>
<td>RESTORETOMARK</td>
<td>string</td>
<td>no</td>
<td>none</td>
<td>Specify transaction log mark.</td>
</tr>
<tr>
<td>AFTERTIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESTORETYPE</td>
<td>FULL, PARTIAL, MOVE</td>
<td>no</td>
<td>FULL</td>
<td>Full = Full database restore, Move = Database move</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>RESTORETYPE is applicable only to RESTORE database operations.</strong> If MOVE is used, then the batch file should contain a series of one or more &lt;MOVE&gt;&lt;filegroup&gt; and &lt;TO&gt;&lt;file path&gt; sequences. Partial = Partial database restore. If PARTIAL is used, the sequence for PARTIAL must specify all of the filegroups in the database whose backup image is referenced by the NBIMAGE keyword.</td>
</tr>
<tr>
<td>RETRYTYPE</td>
<td></td>
<td></td>
<td></td>
<td>See RESTARTTYPE.</td>
</tr>
<tr>
<td>RETRYWAITSECONDS</td>
<td></td>
<td></td>
<td></td>
<td>See RESTARTWAITSECONDS.</td>
</tr>
</tbody>
</table>
### Table 11-2

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Values</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLLBACKVOLUME</td>
<td>TRUE, FALSE</td>
<td>no</td>
<td>FALSE</td>
<td>Tells NetBackup to do the recovery of an Instant Recovery backup using the volume rollback method.</td>
</tr>
<tr>
<td>SQLCOMPRESS</td>
<td>TRUE, FALSE</td>
<td>no</td>
<td>FALSE</td>
<td>Uses SQL Server compression on the backup image. If you enable SQL Server compression, do not enable NetBackup compression.</td>
</tr>
<tr>
<td>SQLHOST</td>
<td>string</td>
<td>no</td>
<td></td>
<td>Name of SQL Server host. If SQLHOST is not specified in a batch file operation, then the SQL Server host is obtained from HKEY_CURRENT_USER\Software\VERITAS\NetBackup\NetBackup for Microsoft SQL Server\DEFAULT_SQL_HOST. If the SQLINSTANCE keyword is not included, then the default SQL Server instance is assumed for the SQL Host.</td>
</tr>
<tr>
<td>Keyword</td>
<td>Values</td>
<td>Required?</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>SQLINSTANCE</td>
<td>string</td>
<td>no</td>
<td>none</td>
<td>Name of the SQL Server instance. Or for backup operations specify $ALL to designate all SQL Server instances including the default instance. If SQLINSTANCE $ALL is used, then it must appear in the first operation of the batch file. Each operation in the batch file is performed for all SQL Server instances on the client where the batch file is executed. Also, it is not necessary to specify an SQLHOST or SQLINSTANCE on any subsequent operations.</td>
</tr>
<tr>
<td>STANDBYPATH</td>
<td>string</td>
<td>no</td>
<td>none</td>
<td>Specify a fully-qualified file path to use for the standby redo log.</td>
</tr>
<tr>
<td>STOPAFTER</td>
<td>datetime string</td>
<td>no</td>
<td>none</td>
<td>Specifies datetime for RESTOREMARK options. The datetime string is formatted as YYYY/MM/DD HH:MM:SS.</td>
</tr>
<tr>
<td>STOPAT</td>
<td>datetime string</td>
<td>no</td>
<td>none</td>
<td>Specifies the point-in-time recovery of a transaction log. The datetime string is formatted as YYYY/MM/DD HH:MM:SS.</td>
</tr>
<tr>
<td>STORAGEIMAGE</td>
<td>string</td>
<td>no</td>
<td>none</td>
<td>Used for restoring a database that was backed up using a grouped Snapshot Client snapshot. STORAGEIMAGE identifies the image with which the physical files are associated.</td>
</tr>
</tbody>
</table>
### Table 11-2
Keywords and values used in batch files (continued)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Values</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRIPES</td>
<td>integer</td>
<td>no</td>
<td>1</td>
<td>Number of stripes. Range is 1–32.</td>
</tr>
<tr>
<td>TO</td>
<td>file path</td>
<td>no</td>
<td>none</td>
<td>Specifies a filegroup destination path. Required for each MOVE keyword. Also must sequentially follow each MOVE entry. The value may be delimited with single quotes.</td>
</tr>
<tr>
<td>TRACELEVEL</td>
<td>MIN, MID, MAX</td>
<td>no</td>
<td>MIN</td>
<td>Trace level.</td>
</tr>
<tr>
<td>TRXOPTION</td>
<td>NOTRUNC, TAILLOG</td>
<td>no</td>
<td>none</td>
<td>SQL Server transaction log backup options.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>If NOTRUNC is not selected, then the transaction log can be backed up and truncated. If TAILLOG is selected, the tail log is backed up and restored.</td>
</tr>
<tr>
<td>USERID</td>
<td>string</td>
<td>no</td>
<td>sa</td>
<td>User ID for logging into SQL Server. This keyword is ignored if you use integrated security.</td>
</tr>
<tr>
<td>VDITIMEOUTSECONDS</td>
<td>integer</td>
<td>no</td>
<td>300</td>
<td>Timeout interval for SQL Server Virtual Device Interface.</td>
</tr>
<tr>
<td>VERIFYONLY</td>
<td>TRUE, FALSE</td>
<td>no</td>
<td>FALSE</td>
<td>Tells SQL Server to verify a backup image but not to restore it.</td>
</tr>
</tbody>
</table>
Table 11-2  Keywords and values used in batch files (continued)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Values</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERIFYOPTION</td>
<td>NONE, STOPONERROR CONTINUEAFTERERROR</td>
<td>no</td>
<td>NONE</td>
<td>This option is only valid for the databases that have an active page. STOPONERROR performs verification and stops if a verification error occurs. CONTINUEAFTERERROR performs verification but continues if a verification error occurs.</td>
</tr>
</tbody>
</table>

Creating a batch file

You can use any of the backup or restore dialog boxes to create a batch file that contains a NetBackup for SQL Server script. This script can be executed at a later time from the Manage Scripts dialog box.

Or you can launch the script from the dbbackex command line program or through the NetBackup scheduler. See the example batch files.

NetBackup for SQL Server sample batch files

To create a batch file

1. Select File > Backup SQL Server objects or File > Restore SQL Server objects.
2. Select the object you want to back up or restore.
3. Select the backup or restore options.
   - See “Options for SQL Server backup operations” on page 163.
   - See “Options for NetBackup for SQL Server restores” on page 69.
4. In the Backup script or Restore script group, click Save.
5. Click Backup or Restore.
6. Specify the following folder for the batch file:
   
   `install_path\NetBackup\DbExt\MsSql\folder`

   Batch files must reside on the host from which they executed. If you perform actions on a remote host, the batch file must reside on that remote host.

   See “Registering authorized locations used by a NetBackup database script-based policy” on page 219.
7 Give the file a unique name with the extension .bch.
8 Click Save.
   Alternatively, you can select the name of an existing file and NetBackup
   appends the new script to it.
9 Click Yes to open and edit the batch file.

Running batch files
Once you have created a batch file, you manually run it from the NetBackup for
SQL Server interface.

To run a batch file
1 Log on to the host and instance you want to access.
   See “Selecting the SQL Server host and instance” on page 162.
2 Select File > Manage script files.
3 Double-click the batch file.
4 Click Start.
5 To monitor the operation, select File > View status.

Adding a new SQL Server legacy policy
This topic describes how to create a SQL Server legacy policy that uses clients and
batch files to perform backups.

---

**Note:** To perform multistreamed backups and restores, or if you have multiple
network interfaces, you need to perform other configuration.

See “Configuring multistriped backups of SQL Server” on page 53.

See “About configuration of SQL Server backups with multiple NICs” on page 177.

---

**To add a new SQL Server legacy policy**
1 Log on to the master server as administrator (Windows) or root (UNIX).
2 Open the NetBackup Administration Console.
3 If your site has more than one master server, choose the one on which you
   want to add the policy.
4 In the left pane, expand NetBackup Management and select Policies.
5 Select Actions > New > Policy.
6 In the **Add a New Policy** dialog box, in the **Policy name** box, type a unique name for the new policy.

7 Click **OK**.

8 In the **Add New Policy** dialog box, in the **Policy type** list, select **MS-SQL-Server**.

   The database agent policy type does not appear in the drop-down list unless your master server has a license for the database agent.

9 Complete the entries on the **Attributes** tab.

   See “**About policy attributes**” on page 38.

10 On the **Instances and Databases** tab, select **Clients for use with batch files**.

   The tab name changes to **Clients** and the **Backup Selections** tab now lets you specify and browse for scripts.

11 Add other policy information as follows:

   - Add schedules.
     See “**About schedule properties**” on page 155.

   - Add clients.
     See “**Adding clients to a policy**” on page 160.

   - Add batch files to the backup selections list.
     See “**Adding batch files to the backup selections list**” on page 161.

12 When you have added all the schedules, clients, and backup selections you need, click **OK**.

---

**About schedule properties**

Each policy has its own set of schedules. These schedules initiate automatic backups and specify when a user can initiate operations. Some schedule properties that have a different meaning for database backups than for file system backups. Other schedule properties vary according to your specific backup strategy and system configuration. See the NetBackup Administrator’s Guide, Volume I.

**Table 11-3** Description of schedule properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type of backup</strong></td>
<td>Specifies the type of backup that this schedule can control. The selection list shows only the backup types that apply to the policy you want to configure. See “<strong>Legacy policy backup types</strong>” on page 156.</td>
</tr>
</tbody>
</table>
Table 11-3 Description of schedule properties (continued)

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule type</td>
<td>You can schedule an automatic backup in one of the following ways:</td>
</tr>
<tr>
<td>Frequency</td>
<td>Frequency specifies the period of time that can elapse until the next backup operation begins on this schedule. For example, assume that the frequency is 7 days and a successful backup occurs on Wednesday. The next full backup does not occur until the following Wednesday. Typically, incremental backups have a shorter frequency than full backups.</td>
</tr>
<tr>
<td>Calendar</td>
<td>The Calendar option lets you schedule the backup operations that are based on specific dates, recurring week days, or recurring days of the month.</td>
</tr>
<tr>
<td>Multiple copies</td>
<td>If you want to specify multiple copies of a backup for the policy, configure Multiple copies on the application backup schedule. If using Snapshot Client, also specify Multiple copies on the automatic schedule.</td>
</tr>
</tbody>
</table>

Legacy policy backup types

Table 11-4 shows that the backup types you can specify for a NetBackup for SQL Server legacy policy that uses clients and batch files. Intelligent Policies have a different set of backup types.

Table 11-4 Legacy policy backup types

<table>
<thead>
<tr>
<th>Backup type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Backup</td>
<td>The application backup schedule enables user-controlled NetBackup operations from the client. These operations include those initiated from the client and those initiated by a full schedule on the master server. NetBackup uses the application backup schedule when the user starts a backup manually. Configure at least one application backup schedule for each database policy. The Default-Application-Backup schedule is configured automatically as an application backup schedule.</td>
</tr>
<tr>
<td>Full Backup</td>
<td>This schedule specifies the dates and times for NetBackup to automatically start backups as indicated in the batch file (full, differential, or transaction log). NetBackup runs the batch files in the order that they appear in the file list. If there is more than one client in the policy, the batch files are run on each client. See “Keywords and values used in batch files” on page 141. See “Converting differential backups to full backups” on page 157.</td>
</tr>
</tbody>
</table>
Converting differential backups to full backups

If a differential backup runs and a full backup does not already exist for the database or filegroup, NetBackup can convert the backup to a full backup. Similarly, NetBackup can convert transaction log backups if a full backup does not already exist for the database. Enable this behavior with the keyword `CONVERTBACKUP`.

See “Keywords and values used in batch files” on page 141.

NetBackup only converts a differential backup if a full backup was never performed on the database or filegroup. If a full backup does not exist in the NetBackup catalog but SQL Server detects an existing full LSN, NetBackup performs a differential backup and not a full. In this situation, you can restore the full backup with native tools and any differentials with the NetBackup MS SQL Client. Or, if NetBackup expired the backup, you can import the full backups into the NetBackup catalog. Then you can restore both the full and the differential backups with the NetBackup MS SQL Client.

The agent checks to determine if a full backup was ever performed for each database. If no previous full backup exists, the backup is converted to a full as follows:

- If you select a database for backup, the backup is converted to a full database backup.
  - If you select Read-write filegroups for the Type of Backup, the backup is converted to a full read/write filegroup backup.

- If you select a filegroup for backup, NetBackup does the following:
  - If the filegroup is the default database filegroup, NetBackup converts the backup to a full filegroup backup.
  - If the filegroup is a secondary filegroup and a backup of the primary filegroup does not exist, NetBackup converts the backup to a partial full database backup. This backup contains the selected filegroup and default filegroup.
  - If the filegroup is a secondary filegroup and a backup of the primary filegroup does exist, NetBackup converts the backup to a full filegroup backup of the selected filegroup.

- If you perform a partial differential backup, NetBackup does the following:
  - If no previous full backup exists for the default filegroup, NetBackup adds the filegroup to the backup and converts the operation to a full partial backup.
  - If a previous full backup exists for the default filegroup but a secondary filegroup in the files list does not have a full backup, NetBackup converts the operation to a full partial backup.
The CONVERTBACKUP option also detects if a full recovery database was switched to the simple recovery model and back to the full recovery model. In this scenario, the log chain is broken and SQL Server requires a differential backup before a subsequent log backup can be created. If NetBackup detects this situation, the backup is converted to a differential database backup.

### Configuring an application backup schedule

A database backup requires an application backup schedule. You cannot perform backups if this type of schedule is not included in the policy. The NetBackup for SQL Server agent automatically creates this schedule and names it **Default-Application-Backup**.

The backup window for an application backup schedule must encompass the time period during which all scheduled jobs and client-initiated jobs can occur. This window is necessary because the application backup schedule accepts the backup request from NetBackup for SQL Server regardless of whether the backup was initiated from an automatic schedule or from the client. You can choose to set the window for the application backup schedule for 24 hours per day, seven days per week. This window ensures that your operations are never locked out due to the application backup schedule.

For any policies that include read-only filegroups, consider creating a schedule with a retention level set to infinity. This level can enable you to avoid redundant backups.

**To configure an application backup schedule**

1. In the **Policy** dialog box, click the **Schedules** tab.
   - To access the **Policy** dialog box, double-click the policy name in the **Policies** list in the NetBackup Administration Console.

2. Double-click the schedule that is named **Default-Application-Backup**.

3. Specify the other properties for the schedule.
   - See “About schedule properties” on page 155.

### Example application backup schedule

Assume the following:

- Users perform database backup operations during business hours, 08:00 to 13:00.
- The automatic backups that use this policy start between 18:00 and 22:00.

In this scenario, the application backup schedule must have a start time of 0800 and a duration of 14 hours. Alternatively, the schedule can have two windows each
day; one with a start time of 0800 and duration of 5 hours, and another with a start time of 1800 and a duration of 4 hours.

Table 11-5 Example settings for a NetBackup for SQL Server application backup schedule

<table>
<thead>
<tr>
<th>Schedule option</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Backup window</td>
<td>Sunday through Saturday 00:08:00 - 22:00:00</td>
</tr>
</tbody>
</table>

## Configuring automatic backup schedules

If you put multiple batch files in the same policy, they run during each automatic backup session for that policy. You may have a variety of SQL Server backup operations that you want to run on different schedules. In this case, you may want to create multiple policies each with an automatic backup schedule that is different. Then assign each batch file to the policy that uses the appropriate automatic backup schedule.

If you plan to have NetBackup perform automatic backups, or if you use Snapshot Client features, you need one or more automatic backup schedules.

### To configure an automatic backup schedule

1. On the **Policy** dialog box, click the **Schedules** tab.
2. Click **New**.
3. Specify a unique name for the schedule.
4. Select the **Full Backup** schedule.
   
   See “Legacy policy backup types” on page 156.
5. Specify the other properties for the schedule.
   
   See “About schedule properties” on page 155.
6. Click **OK**.

## Example automatic backup schedule

Table 11-6 shows example settings for an automatic backup schedule.
Adding clients to a policy

The client list is the list of hosts on which your batch files are run during an automatic backup. A NetBackup client must be in at least one policy but can be in more than one.

For a NetBackup for SQL Server policy, clients you want to add must have the following items installed or available:

- SQL Server
- NetBackup client or server
- The backup or restore batch files

**Note:** Each batch file must be present on each client.

To add clients to a NetBackup for SQL Server policy

1. Open the policy you want to edit or create a new policy.
   
   To access the **Policy** dialog box, double-click the policy name in the **Policies** list in the NetBackup Administration Console.

2. Before you can add clients, you must select **Clients for use with batch files** on the **Instances and Databases** tab.

3. Click the **Clients** tab.

4. Click **New**.

---

### Table 11-6 Example settings for a NetBackup for SQL Server automatic backup schedule

<table>
<thead>
<tr>
<th>Schedule property</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every week</td>
</tr>
<tr>
<td>Backup window</td>
<td>Sunday, 18:00:00 - 22:00:00</td>
</tr>
</tbody>
</table>
5 Type the name of the client and select the hardware and operating system of the client.

If SQL Server is installed in a cluster, specify the virtual name of the SQL Server as the client name.

**Note:** If you installed NetBackup on more than one node in the SQL Server cluster, you must perform additional configuration.

See “Reviewing the auto-discovered mappings in Host Management” on page 57.

See “Configuring mappings for restores of a distributed application, cluster, or virtual machine” on page 56.

6 Choose one of the following:

- To add another client, click Add.
- If this client is the last client you want to add, click OK.

7 In the Policy dialog box, click OK.

---

**Adding batch files to the backup selections list**

The backup selections list in a database policy has a different meaning than for non-database policies. For example, in a Standard or Microsoft Windows policy, the list contains files and directories to be backed up. In a database policy, you can specify batch files to run. (For NetBackup for SQL Server, the scripts are called batch files and have the .bch extension.) Batch files describe the backup operations you want to start. You can start them by initiating manual or scheduled operations from the NetBackup server. These files reside on the client and direct the operation of NetBackup for SQL Server and SQL Server.

Add batch files if you want a policy that runs scheduled backups. All batch files that are listed in the backup selections list are run for manual backups and for automatic backup schedules. Create the schedules on the Schedules tab. NetBackup runs the batch files in the order that the batch files appear in the backup selections list.

**Note:** Specify the correct batch file names in the backup selections list to prevent an error or possibly a wrong operation.
To add batch files to the backup selections list

1 Ensure that the batch file resides on the client.
   See “Registering authorized locations used by a NetBackup database script-based policy” on page 219.

2 Open the policy you want to edit or create a new policy.

3 Before you can add batch files, you must do the following:
   ■ On the Instances and Databases tab, select Clients for use with batch files.
   ■ On the Clients tab, add one or more clients.

4 Click the Backup Selections tab.

5 Click New.

6 In the Add Backup Selection dialog box, specify the names of the batch files that you want to use. Specify the file name in one of the following ways:
   ■ Click Browse. Navigate to and select the batch file, then click OK.
   ■ In the Script box, type the full path name of a batch file on the client, then click Add.
     For example:

     \install_path\NetBackup\DbExt\Mssql\bkup.bch

     You must indicate the full pathname of the batch file.

7 Add any other batch files.

8 Click OK to add the batch files to the backup selections list.

9 Click OK.

Selecting the SQL Server host and instance

Use this procedure to set which SQL Server host and the instance that you want the NetBackup MS SQL Client to access. The user ID and password are only required if the host uses standard or mixed security. If applicable, you only need to provide these credentials when you first open the NetBackup MS SQL Client.

To select the SQL Server host and instance

1 Open the NetBackup MS SQL Client.

2 Select File > Set SQL Server connection properties.
3 In the **SQL Server connection properties** dialog box, from the **Host** drop-down list, select the SQL Server host. You can type a host name if it does not appear in the drop-down list. If you select a remote host and click **Apply**, the **Host type** is shown as "remote".

4 From the **Instance** drop-down list, select the SQL Server instance. You can type an instance name if it does not appear in the drop-down list. You can designate the default instance either by setting the Instance box to <default> or to empty (no spaces).

5 Click **Apply** to save your changes.

6 Click **Close**.

### Options for SQL Server backup operations

**Table 11-7** describes the options that are available when you perform backups. These options appear in the **Backup Microsoft SQL Server Objects** dialog box after you select **File > Backup SQL Server objects**.

**Caution:** Do not enable multiplexing if the policy is also configured with multiple stripes. Restores fail when both multiplexing and multiple stripes are configured for a backup policy.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expand database</td>
<td>This pane lets you traverse live databases. You can expand the SQL Server instance to view its databases. Expand each database to view its filegroups or expand a filegroup to view its files. You can select any object in this pane to view its constituent objects in the right-hand pane.</td>
</tr>
<tr>
<td>Select database(s) for backup from <em>instance</em> <em>host</em>instance</td>
<td>Select the objects that you want to back up from this pane. This pane displays the list of constituent database objects of the selected host and instance in the left-hand pane. You can select one or more objects (databases) in this pane.</td>
</tr>
</tbody>
</table>
Table 11-7 Options for SQL Server backup operations (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type of Backup</strong></td>
<td>The following backup types are available:</td>
</tr>
<tr>
<td>■ Full</td>
<td>Create a full database backup.</td>
</tr>
<tr>
<td>■ Full differential</td>
<td>Create a differential backup.</td>
</tr>
<tr>
<td>■ transaction log</td>
<td>Create a transaction log backup. This type of backup is only available for databases. When you select this type of backup, you then need to select a backup option from the Transaction log backup options list.</td>
</tr>
<tr>
<td>■ Read/write filegroups</td>
<td>Create a backup of read-write filegroups in a database.</td>
</tr>
<tr>
<td>■ Differential on read/write filegroups</td>
<td>Create a differential backup of read-write filegroups in a database.</td>
</tr>
<tr>
<td>■ Create a template for partial backup</td>
<td>Create a backup of only the selected filegroups in a database.</td>
</tr>
<tr>
<td>■ Create a template for partial differential backup</td>
<td>Create a differential backup of only the selected filegroups in a database.</td>
</tr>
<tr>
<td><strong>Transaction log backup options</strong></td>
<td>The following options are available when you have chosen a transaction log backup type:</td>
</tr>
<tr>
<td>■ Back up and truncate transaction log</td>
<td>Back up the transaction log and remove the inactive part of the transaction log.</td>
</tr>
<tr>
<td>■ Back up transaction log, but do not truncate it</td>
<td>Back up a transaction log without truncating it.</td>
</tr>
<tr>
<td>■ Back up and restore tail log</td>
<td>Back up and recover the tail log from disk.</td>
</tr>
<tr>
<td><strong>Use SQL compression</strong></td>
<td>Select this option if you want to use SQL Server to compress the backup image. If you enable SQL Server compression, do not enable NetBackup compression.</td>
</tr>
<tr>
<td><strong>Backup script</strong></td>
<td>■ Launch Immediately&lt;br&gt;Start the backup operation immediately. &lt;br&gt;Launch immediately is disabled if you are logged into a SQL Server instance that is not on the local host. If you generate a script for a non-local host, then it must be executed on that host. &lt;br&gt; ■ Save&lt;br&gt;Generate a script that can be started at a later time.</td>
</tr>
</tbody>
</table>
Table 11-7 Options for SQL Server backup operations (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Back up</strong></td>
<td>In the right-hand pane, choose one of the following backup options:</td>
</tr>
<tr>
<td></td>
<td>■ <strong>Selected</strong></td>
</tr>
<tr>
<td></td>
<td>Back up only the objects selected.</td>
</tr>
<tr>
<td></td>
<td>■ <strong>All but selected</strong></td>
</tr>
<tr>
<td></td>
<td>Back up all of the objects, except those selected.</td>
</tr>
<tr>
<td></td>
<td>■ <strong>All</strong></td>
</tr>
<tr>
<td></td>
<td>Back up all of the objects.</td>
</tr>
<tr>
<td><strong>Stripes</strong></td>
<td>Set the number of backup stripes that you want SQL Server to create for your backup. Type a number from 1 to 32.</td>
</tr>
<tr>
<td></td>
<td><strong>Caution:</strong> Do not enable multiplexing if the policy is also configured with multiple stripes. Restores fail when both multiplexing and multiple stripes are configured for a backup policy.</td>
</tr>
<tr>
<td></td>
<td>See “Configuring multistriped backups of SQL Server” on page 53.</td>
</tr>
<tr>
<td><strong>Resume options</strong></td>
<td>■ <strong>Do not resume unsuccessful backups</strong></td>
</tr>
<tr>
<td></td>
<td>■ <strong>Retry from the beginning</strong></td>
</tr>
<tr>
<td></td>
<td>Restart failed backups after waiting 60 seconds.</td>
</tr>
<tr>
<td></td>
<td>■ <strong>Save work and restart at point of failure</strong></td>
</tr>
<tr>
<td></td>
<td>Divide the backup into multiple streams and back up separately. Any streams that fail are restarted after 60 seconds.</td>
</tr>
<tr>
<td></td>
<td>This option is available when the following conditions are met:</td>
</tr>
<tr>
<td></td>
<td>■ Exactly one object has been selected,</td>
</tr>
<tr>
<td></td>
<td>■ The object that is selected for backup is a database or filegroup and the backup type is full,</td>
</tr>
<tr>
<td></td>
<td>■ The SQL Server object uses the “full” or “bulk-logged” recovery method.</td>
</tr>
<tr>
<td><strong>NetBackup policy</strong></td>
<td>If this host is the NetBackup master server, then this list includes all active policies of type MS-SQL-Server. You can select one of these policies or type the name of a policy.</td>
</tr>
<tr>
<td></td>
<td>The default is &lt;any&gt;. If you select the default, then NetBackup selects which MS-SQL-Server policy to use.</td>
</tr>
<tr>
<td><strong>Page verification</strong></td>
<td>This option is enabled for objects have a page verification type that is either torn page detection or checksum. All of the objects in the right-hand pane must have the proper verification type.</td>
</tr>
<tr>
<td></td>
<td>This indicates a performance penalty when you use page verification.</td>
</tr>
<tr>
<td></td>
<td>■ <strong>Do not perform verification</strong></td>
</tr>
<tr>
<td></td>
<td>Do not perform page verification before you run the backup.</td>
</tr>
<tr>
<td></td>
<td>■ <strong>Perform verification</strong></td>
</tr>
<tr>
<td></td>
<td>Perform page verification when you run the backup and stop the backup if a verification error is encountered.</td>
</tr>
</tbody>
</table>
### Table 11-7
Options for SQL Server backup operations (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backup</td>
<td>Start a database backup or generate a database backup script. This option is enabled only when you select an object to back up.</td>
</tr>
</tbody>
</table>

### About viewing the properties of the objects selected for backup

You can view the properties of any object in the **Backup Microsoft SQL Server Objects** dialog box by right-clicking the object. Table 11-8 describes the properties of objects that are selected for backup.

**To view the properties of an object that is selected for backup**

1. Select **File > Backup SQL Server objects**.
2. In the **Backup Microsoft SQL Server Objects** dialog box, in the right pane, right-click an object and select **Properties**.
3. When you finish, click **OK**.

### Table 11-8
Properties of the objects that are selected for backup

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object type</td>
<td>Database, database filegroup, database file, or transaction log.</td>
</tr>
<tr>
<td>Object name</td>
<td>Name of the object.</td>
</tr>
<tr>
<td>Parent (database, instance, filegroup, etc.)</td>
<td>Name of the object’s parent.</td>
</tr>
<tr>
<td>SQL Server instance</td>
<td>SQL Server instance the object belongs to.</td>
</tr>
<tr>
<td>File size</td>
<td>The size of the component files. This size should closely match the size of a backup snapshot.</td>
</tr>
<tr>
<td>Data size</td>
<td>Size of the backup stream. Applies to databases only.</td>
</tr>
<tr>
<td>Page verification</td>
<td>The type of SQL Server page verification that is configured for selected databases, filegroups, and logical files. The available values are: none, torn page detection, or checksum.</td>
</tr>
<tr>
<td>Read-only/read-write</td>
<td>The attribute that is applied to the filegroup.</td>
</tr>
<tr>
<td>On-line/off-line</td>
<td>The status of the filegroup.</td>
</tr>
</tbody>
</table>
Performing user-directed backups of SQL Server databases

This procedure describes how to perform a database backup.

To perform a user-directed backup of a SQL Server database

1. Open the NetBackup MS SQL Client interface.
2. Select the host and instance you want to access.
   See “Selecting the SQL Server host and instance” on page 162.
3. Select File > Backup SQL Server objects.
4. In the Backup Microsoft SQL Server Objects dialog box, in the left pane, select the database instance.
5. In the right pane, select one or more databases that you want to back up.
6. Select the Type of Backup.
   Select one of the following:
   - To perform a full backup, select Full Backup.
   - To back up the database with the differential option, select Perform differential backup.
7. Select the backup options.
   See “Options for SQL Server backup operations” on page 163.
8. Click Backup.
9. When you are prompted to start the backup, click Yes.
10. To view the progress of the backup, select File > View status.

Performing user-directed backups of SQL Server transaction logs

This procedure describes how to perform a transaction log backup.
Caution: Ensure that the entire sequence of transaction logs generated following any database backup are maintained on the same NetBackup server. Back up all transaction logs to the same facility and do not allow any logs to expire before the others.

To back up a transaction log

1. In SQL Server, set the Recovery Model setting to either Full or Bulk-logged.
2. Open the NetBackup MS SQL Client interface.
3. Select the host and instance you want to access.
   See “Selecting the SQL Server host and instance” on page 162.
4. Select File > Backup SQL Server Objects.
5. In the Backup Microsoft SQL Server Objects dialog box, in the left pane, select the database instance.
6. In the right pane, select one or more databases whose transaction logs you want to back up.
7. In the Type of Backup list, select transaction log.
8. From the drop-down list, select the transaction log option. For more information, see the following table.

<table>
<thead>
<tr>
<th>Transaction Log Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back up and truncate</td>
<td>Back up the transaction log and remove the inactive part of the transaction log.</td>
</tr>
<tr>
<td>Truncate transaction log, but don't back it up</td>
<td>Truncate the log without performing a backup.</td>
</tr>
<tr>
<td>Back up and restore tail log</td>
<td>Back up and recover the tail log from disk.</td>
</tr>
</tbody>
</table>

9. Select the backup options.
10. Click Backup.
    To view the progress of the backup, select File > View status.

Performing user-directed backups of SQL Server database filegroups

More information is available on how to use read-write and read-only filegroups in your backup strategy.

See “Performing user-directed backups of read-write filegroups” on page 170.
See “Performing user-directed backups of read-only filegroups” on page 169.
To back up a database filegroup
1. Open the NetBackup MS SQL Client interface.
2. Select the host and instance you want to access.
   See “Selecting the SQL Server host and instance” on page 162.
3. Select File > Backup SQL Server objects.
4. In the Backup Microsoft SQL Server Objects dialog box, in the left pane, expand the instance name.
5. Select a database whose filegroups you want to back up.
6. In the right pane, select one or more filegroups that you want to back up.
7. Select the backup options.
8. Click Backup.
   To view the progress of the backup, select File > View status.

Performing user-directed backups of read-only filegroups

When you separate read-only and read-write filegroups in your backup strategy, you can reduce total media usage and the total time you spend on backup operations. To back up read-only filegroups you must first create a separate policy for this type of backup. You can also verify that all read-only filegroups are backed up.

See “Viewing SQL Server read-only backup sets” on page 170.

To back up read-only filegroups
1. Open the NetBackup MS SQL Client interface.
2. Create a batch file that includes the read-only filegroups.
   All read-only filegroups must be included in some combination of full, or individual filegroup and file backups. You only need to perform this backup one time.
3. In the NetBackup Administration Console, create a backup policy for read-only filegroups.
   ■ In the Application Backup schedule, set the Retention level of Infinite.
   ■ Add the batch file that you created to the backup selections list.
4 Back up the read-only filegroups.

5 If necessary, confirm all read-only groups are backed up by viewing the read-only backup set.

See “Viewing SQL Server read-only backup sets” on page 170.

Viewing SQL Server read-only backup sets

If you perform periodic backups only on read-write filegroups, you can verify if you have retained backups of the read-only filegroups.

To view read-only backup sets

1 Open the NetBackup MS SQL Client interface.

2 Browse for the backup images that contain the read-only backup sets.

   See “Browsing for SQL Server backup images” on page 67.

3 In the Restore Microsoft SQL Server Objects dialog box, expand the instance name.

4 Right-click the database and select Properties.

5 Click the "Read-only backup set" tab.

   If the database does not contain read-only filegroups, then the message "This database does not contain any read-only filegroups." is shown. If backups do not exist for all of the read-only filegroups, then a list of the filegroups that were not backed up is shown. Finally, if a backup is found of all of the read-only filegroups, then the name appears of the latest image that contains this backup.

6 If there are any read-only filegroups that are not backed up, back them up as soon as possible. These backups ensure you can perform a full recovery.

7 Click OK.

Performing user-directed backups of read-write filegroups

When you separate read-only and read-write filegroups in your backup strategy, you can reduce total media usage and the total time you spend on backup operations. More information is available on backing up read-only filegroups.

See “Performing user-directed backups of read-write filegroups” on page 170.

See “Performing user-directed backups of read-only filegroups” on page 169.

Note: Immediately back up any filegroup when you change it from read-write to read-only.
Performing user-directed backups of SQL Server database files

To back up database files

1. Open the NetBackup MS SQL Client interface.
2. Select File > Backup SQL Server objects.
3. In the Backup Microsoft SQL Server Objects dialog box, in the left pane, select the database instance.
4. In the right pane, select one or more databases that you want to back up.
5. Select the Type of Backup, as follows:
   - To perform a full backup of the read-write filegroups, select Read-write filegroups.
   - To perform a differential backup of the read-write filegroups, select Differential on read-write filegroups.
6. Select the backup options.
7. From the Backup script group, select Save.
8. Click Backup.
9. Open the NetBackup Administration Console.
10. Create a backup policy for read-write filegroups.
   - Create a Full Backup schedule with the wanted retention period.
   - Add the batch file that you created to the backup selections list.
11. (Optional) Manually back up the read-write filegroups.
   - If you do not perform a manual backup at this time, the backup runs automatically through the schedule you created in step 10.

Performing user-directed backups of SQL Server databases

This procedure describes how to back up database files.

To back up a database file

1. Open the NetBackup MS SQL Client interface.
2. Select the host and instance you want to access.
   - See “Selecting the SQL Server host and instance” on page 162.
3. Select File > Backup SQL Server objects.
Performing partial database backups

This procedure describes how to create a script for to perform a partial database backup.

**To perform a partial database backup**

1. Open the NetBackup MS SQL Client interface.
2. Select the host and instance you want to access.
   
   See “Selecting the SQL Server host and instance” on page 162.
3. Select File > Backup SQL Server objects.
4. In the Backup Microsoft SQL Server Objects dialog box, in the left pane, select the database instance.
5. In the right pane, select a database that you want to back up.
6. For the Type of Backup, select one of the following:
   
   - Create a template for partial backup.
   - Create a template for partial differential backup.
7. Select the backup options.
8. Click Backup.
9. In the Save Script As dialog box, specify a file name and click OK.
10. When you are prompted to open the template, click Yes.
11 Edit the template by uncommenting the filegroups that you want to include in the backup. You must uncomment at least one filegroup.

For example, replace:

```
If you wish to include filegroup DBA_FG1 in the partial backup,
then remove the hash mark that precedes the following line.
#FILEGROUP DBA_FG1
```

with:

```
FILEGROUP DBA_FG1
```

12 When you are finished modifying the template, save it.

13 To run the backup, select File > Manage script files, select the script you created, and click Start.

---

**Performing a backup of a remote SQL Server installation**

You can use NetBackup for SQL Server to back up databases on a remote host. Generated batch files must be saved on the remote host. You can launch the operation from the local installation of NetBackup for SQL Server, from an automatic backup policy, or from a manual backup.

**To perform a backup of a remote SQL Server installation**

1 Select the host and instance you want to access.

   See “Selecting the SQL Server host and instance” on page 162.

2 Select File > Backup SQL Server objects.

3 Select the options for the operation.

   See “Options for SQL Server backup operations” on page 163.

   **Save** is enabled in the backup dialog box. **Launch immediately** is disabled because the generated script must be executed on the remote host that you are logged on to.

4 Click Backup.
5 In the **Save Script As** dialog box, navigate to the
   \install_path\NetBackup\DbExt\MsSql\ folder on the remote host, and save
   the batch file there.

6 Launch the backup operation.
   Do one of the following:
   - Run the operation from the local installation of NetBackup for SQL Server.
   - Create a new policy that includes the remote SQL Server client. Add the
     batch file to the **Backup Selections** list in the policy.

---

**About file checkpointing with NetBackup for SQL Server**

Use file checkpointing if you need to perform a large backup and want to save
completed work in case the operation fails before it completes. When file
checkpointing is enabled, the database or filegroup is divided into file sets and
backed up as separate units. The following batch file command initiates file
checkpointing:

```
MAXRESTARTSETS integer
```

The backup operation is split into the number of operations equal to the `integer`
value. If the number of files is less than the `integer` value, then the number of
separate operations is equal to the number of files.

File checkpointing is available for databases and filegroups that are backed up as
streams or with the snapshot option. However, the following restrictions exist:

- The backup object must contain at least two files.
- The recovery model of the database cannot be “simple”.
- If the snapshot option is used for backup, then the method cannot be Instant
  Recovery. However, file checkpointing that uses Instant Recovery to a storage
  unit is supported.
- The batch file that you use for a file checkpoint backup can specify only one
  database or filegroup. You cannot use the `DATABASE $ALL` option.

When you use file checkpointing for backing up a full database, NetBackup for SQL
Server automatically splits the database into fileset components. Recovering the
database from components requires a restore of the transaction log. NetBackup
for SQL Server automatically includes a backup log directive in the generated batch
file when you choose file checkpointing from the backup dialog box.
About automatic retry of unsuccessful SQL Server backups

NetBackup for SQL Server provides the following options to retry unsuccessful backup attempts.

**Automatic retry**
NetBackup for SQL Server keeps track of the unsuccessful backups that may have resulted from the execution of a batch file. When the initial backup attempt is complete, the agent rewrites the batch file, including only those operations that failed. The rewritten batch file is launched automatically.

**Manual retry**
A manual retry is similar to an automatic retry except that NetBackup does not launch the rewritten batch file. Instead it is written to the `install_path\dbext\mssql\temp` directory. The user can then choose when to run the new batch file.

To use automatic retry, add the following line to your batch file.

```
RESTARTTYPE AUTO
```

By default, the unsuccessful backups are retried one time automatically after 60 seconds. To change the delay following the unsuccessful attempt, then add the following to your batch file.

```
RESTARTWAITSECONDS <integer>
```

You can also specify the number of retries. Add the following to your batch file.

```
NUMRESTARTS <1 to 9>
```

To use manual retry, add the following line to your batch file.

```
RESTARTTYPE MANUAL
```

Retry may also be used with file checkpoints. Any parts of the operation that fail can be written to a new batch file that can be launched either automatically or manually.

See “About file checkpointing with NetBackup for SQL Server” on page 174.

You can enable file checkpointing with automatic retry in the backup dialog in the NetBackup for SQL Server Client. Select a single database (or filegroup), then from the Resume options for this selection list, select **Save work and restart at point of failure**.

This action creates a batch file that contains the following scripting:
MAXRESTARTSETS 32
RESTARTWAITSECONDS 60
NUMRESTARTS 1

MAXRESTARTSETS 32 means that up to 32 pieces are backed up independently. The keywords RESTARTWAITSECONDS and NUMRESTARTS are synonymous with the following:

RETRYWAITSECONDS 60
NUMRETRIES 1

These keywords indicates the following things: first, that an automatic retry is launched after 60 seconds for all of the pieces that failed to get backed up on the first time. Second, the restart is attempted only one time. You can manually change either of these parameters.

In addition, you can choose to not have the retry script automatically launched. Replace the NUMRETRIES command with RETRYTYPE MANUAL. For example, replace the following:

NUMRETRIES 1

with

RETRYTYPE MANUAL

Note: All of the keyword-value pairs that are described in this topic are only permitted in the first operation of the batch file.
Using NetBackup for SQL Server with multiple NICs

This chapter includes the following topics:

- About configuration of SQL Server backups with multiple NICs
- Configuring the NetBackup client with the private interface name
- Configuring backups of SQL Server when you have multiple NICs (SQL Server Intelligent Policies)
- Configuring backups for SQL Server when you have multiple NICs (legacy SQL Server policies)
- Performing restores of SQL Server when you have multiple NICs
- Configuring backups of a SQL Server cluster when you have multiple NICs (SQL Server Intelligent Policies)
- Configuring backups of a SQL Server cluster when you have multiple NICs (legacy SQL Server policies)
- Creating a batch file for backups of a SQL Server cluster when you have multiple NICs (legacy SQL Server policies)
- Performing restores of a SQL Server cluster when you have multiple NICs

About configuration of SQL Server backups with multiple NICs

Many administrators want to reserve a separate network interface for their SQL Server host machines that are used for routing backup traffic. This type of
environment requires additional configuration for backup policies and the NetBackup client that backs up SQL Server. Special configuration is also required to perform restores.

**Note:** If you have a SQL Server cluster in a private network, you must configure the mappings for distributed application restores and review the auto-discovered mappings for the hosts in your environment.

See “Configuring mappings for restores of a distributed application, cluster, or virtual machine” on page 56.

See “Reviewing the auto-discovered mappings in Host Management” on page 57.

The following distinct network resources exist in a multi-NIC environment:

- The public name of each SQL Server host (for example, sqlhost1 and sqlhost2)
- The private interface name that is used to back up each of the SQL Server hosts (for example, sqlhost1-NB and sqlhost2-NB)

The following additional resources exist for a SQL Server cluster in a multi-NIC environment:

- The public virtual name of the SQL Server (for example, virtsql)
- The private virtual name of the SQL Server (for example, virtsql-NB)

The following requirements exist to use NetBackup for SQL Server in a multi-NIC environment:

- Install the NetBackup client on the SQL Server using the private name of the SQL Server host as the NetBackup client name. Alternatively, you can configure the NetBackup client name after installation. See “Configuring the NetBackup client with the private interface name” on page 179.

- For intelligent policies, configure a backup policy that includes the private interface name of the host or client. See “Configuring backups of SQL Server when you have multiple NICs (SQL Server Intelligent Policies)” on page 180. See “Configuring backups of a SQL Server cluster when you have multiple NICs (SQL Server Intelligent Policies)” on page 183.

- For legacy SQL Server policies, configure a backup policy that includes the private interface name of the host or client. See “Configuring backups for SQL Server when you have multiple NICs (legacy SQL Server policies)” on page 181.
See “Configuring backups of a SQL Server cluster when you have multiple NICs (legacy SQL Server policies)” on page 184.

Note that if you want to protect a SQL Server cluster with a legacy SQL Server policy, you must edit the backup batch file. The BROWSECLIENT parameter must indicate the private name of SQL Server host or virtual SQL Server.

- Configure permissions to allow all nodes in the cluster to browse for backups across the private interface (redirected restores). The administrator can allow all clients or allow single clients to browse and restore a backup that is performed over the multi-NIC connection. 
  See “Configuring permissions for redirected restores” on page 79.

- For restores in a multi-NIC environment, refer to the following topic: 
  See “Performing restores of SQL Server when you have multiple NICs” on page 182.

If you want to perform a restore from a SQL Server cluster, you must edit the restore batch file. In the batch file, you must change the BROWSECLIENT parameter to indicate the private name of virtual SQL Server.

See “Performing restores of a SQL Server cluster when you have multiple NICs” on page 186.

**Configuring the NetBackup client with the private interface name**

To perform backups over a private network interface, NetBackup must use the private name of the client. If you installed the NetBackup client using the public interface name, follow this procedure to configure the NetBackup client name as the private interface name.

For cluster environments, additional configuration is required. In that case, NetBackup must use the private virtual name of the SQL Server cluster.

See “Configuring backups of clustered SQL Server instances (legacy SQL Server policies)” on page 134.

To configure the NetBackup client with the private interface name

1. Open the Backup, Archive, and Restore interface.
2. Select File > NetBackup Client Properties.
3. Click the General tab.
4. In the Client name box, specify the private name of the client.

For example, the private name for the computer sqlhost1 is sqlhost1-NB.
Configuring backups of SQL Server when you have multiple NICs (SQL Server Intelligent Policies)

This topic describes how to create a SQL Server Intelligent Policy to protect a SQL Server when you have multiple NICs. The following configuration changes must be made to allow for backups and restores over a private interface:

- Install the NetBackup client on the SQL Server using the private name of the SQL Server host as the NetBackup client name.
  Alternatively, you can configure the NetBackup client name after installation. See “Configuring the NetBackup client with the private interface name” on page 179.

- The backup policy must include the private interface name of the SQL Server host.
  During instance discovery NetBackup automatically adds an instance with the NetBackup client name. If you installed the NetBackup client using the private interface name, NetBackup uses the private name when it performs backups.

To configure a backup policy for a SQL Server in a cluster with a multi-NIC (SQL Server Intelligent Policies)

1. If you installed the NetBackup client on the SQL Server host using the public interface name, follow the procedure to configure the NetBackup client name as the private interface name.
   See “Configuring the NetBackup client with the private interface name” on page 179.

2. Open the NetBackup Administration Console.

3. Expand NetBackup Management > Applications > Microsoft SQL Server.

4. Click All Instances.

5. Find and register the instance that has the private interface name of the SQL Server host (sqlhost1-NB).

6. Create a new policy or open an existing policy.

7. On the Instances and Databases tab, select Protect instances.

8. Click New.
9 To add the instances or databases that you want to protect, select or expand the instance that has the private interface name of the SQL Server (sqlhost1-NB).

See “Adding instances to a policy” on page 42.

See “Adding databases to a policy” on page 43.

10 Add other policy information as follows:

■ Add schedules.
  See “About schedule properties” on page 39.

■ Add database objects to the backup selections list.
  See “Adding filegroups or files to the backup selections list” on page 46.

■ (Optional) Make changes to any tuning parameters.
  See “About tuning parameters for SQL Server backups” on page 49.

Configuring backups for SQL Server when you have multiple NICs (legacy SQL Server policies)

This topic describes how to configure a legacy backup policy using batch files to protect SQL Server with a multi-NIC. The following configuration changes must be made to allow for backups and restores over a private interface:

■ Install the NetBackup client on the SQL Server using the private name of the SQL Server host as the NetBackup client name.
  Alternatively, you can configure the NetBackup client name after installation. See “Configuring the NetBackup client with the private interface name” on page 179.

■ The backup policy must include the private interface name of the SQL Server host.

To configure backups for SQL Server when you have multiple NICs (legacy backup policies)

1 If you installed the NetBackup client on the SQL Server host using the public interface name, follow the procedure to configure the NetBackup client name as the private interface name.
  See “Configuring the NetBackup client with the private interface name” on page 179.

2 Open the NetBackup Administration Console.

3 Create a new policy or open an existing policy.
4  On the Clients tab, add a new client.
   For the Client name, provide the private interface name. For example, the
   public name is sqlhost1. The private interface that is used to back up sqlhost1
   is sqlhost1-NB.

5  Add other policy information as follows:
   ■ Add schedules.
     See “About schedule properties” on page 155.
   ■ Create and add batch files to the backup selections list.
     See “About using batch files with NetBackup for SQL Server” on page 140.
     See “Adding batch files to the backup selections list” on page 161.

Performing restores of SQL Server when you have multiple NICs

To perform restores of a SQL Server in a multi-NIC environment, you need to do
the following:
   ■ Connect to SQL Server host using the public name of the host.
   ■ To browse for backup images, specify public name of the SQL Server for the
     SQL Host name. Specify the private name of the SQL Server for the Source
     Client.

If you use SQL Server policies in a cluster environment, you must follow a different
procedure:
   See “Performing restores of a SQL Server cluster when you have multiple NICs”
on page 186.

To perform SQL Server restores when you have multiple NICs

1  Open the NetBackup MS SQL Client.
2  Select File > Set SQL Server connection properties.
3  In the Host box, specify the public name of the SQL Server host.
4  Click OK.
5  Select File > Restore SQL Server objects.
6  In the SQL Host box, specify the public name of the SQL Server host
   (sqlhost1).
7  In the Source Client box, specify the private interface name of the SQL Server
   host (sqlhost1-NB).
8 Click OK.

A dialog box opens that shows the SQL Server backups that the SQL Host made on the private network interface.

9 Continue with the restore as normal.

See “Restoring a SQL Server database backup” on page 71.

Configuring backups of a SQL Server cluster when you have multiple NICs (SQL Server Intelligent Policies)

This topic describes how to create a SQL Server Intelligent Policy to protect a SQL Server when you have multiple NICs. During instance discovery NetBackup automatically adds an instance with the NetBackup client name. For a virtual SQL Server in a multi-NIC environment, you must add and register the instance with the private interface name of the virtual SQL Server. This name is the instance name that you add to the backup policy.

To configure a backup policy for a SQL Server cluster with a multi-NIC (SQL Server Intelligent Policies)

1 Open the NetBackup Administration Console.

2 Expand NetBackup Management > Applications > Microsoft SQL Server.

3 Click All Instances.

4 Manually add a new instance and register it. For the Host, provide the private interface name of the virtual SQL Server (virtsql-NB).

5 Create a new policy or open an existing policy.

6 On the Instances and Databases tab, select Protect instances.

7 Click New.

8 To add the instances or databases that you want to protect, select or expand the instance that has the private interface name of the virtual SQL Server (virtsql-NB).

See “Adding instances to a policy” on page 42.

See “Adding databases to a policy” on page 43.

9 Add other policy information as follows:

- Add schedules.
  See “About schedule properties” on page 39.
Configuring backups of a SQL Server cluster when you have multiple NICs (legacy SQL Server policies)

This topic describes how to create a legacy SQL Server backup policy to protect a SQL Server cluster with a multi-NIC. When you create the backup policy, it must include a client that has the private interface name of the virtual SQL Server. The public name of the host should not be used.

To configure backups of a SQL Server when you have multiple NICs (legacy backup policies)

1. Open the NetBackup Administration Console.
2. Create a new policy or open an existing policy.
3. On the Clients tab, add a new client.
   
   For the client name, use the private interface name of the virtual SQL Server. For example, virtsql-NB.
4. Add other policy information as follows:
   
   - Add schedules.
     See “About schedule properties” on page 155.
   - Create a batch file that includes the private interface name of the virtual SQL Server. Then add this batch file to the backup selections list.
     See “Creating a batch file for backups of a SQL Server cluster when you have multiple NICs (legacy SQL Server policies)” on page 184.
     See “Adding batch files to the backup selections list” on page 161.

Creating a batch file for backups of a SQL Server cluster when you have multiple NICs (legacy SQL Server policies)

This topic describes how to create a batch file for a legacy backup policy to protect a SQL Server cluster with a multi-NIC connection. To create the batch file you need
to connect to the SQL Server host using the public name of the virtual SQL Server. The batch file must include the private name of the virtual SQL Server.

To create a batch file for SQL Server cluster backups with a multi-NIC connection

1. On any node in the SQL Server cluster, open the NetBackup for SQL Server interface.
2. Select File > Set SQL Server connection properties.
3. In the Host box, specify the public name of the virtual SQL Server host (virtsql).
4. Click Apply and Close.
5. Select File > Backup SQL Server objects.
6. Select the databases to back up.
7. Select the backup options.

**Note:** Do not attempt to perform an immediate backup from the backup dialog box. The generated batch files must be modified before they can be run successfully.

8. From the Backup script options, click Save.
9. Click Backup.

A batch file similar to the following is created:

```
OPERATION BACKUP
DATABASE "ACCOUNTING"
SQLHOST "VIRTSQL"
NBSERVER "THOR"
BROWSECLIENT "VIRTSQL"
MAXTRANSFERSIZE 0
BLOCKSIZE 7
ENDOPER TRUE
```
10 Change the line value that is associated with the BROWSECLIENT from the public name of the virtual SQL Server to the private name.

OPERATION BACK
UPDATABASE "ACCOUNTING"
SQLHOST "VIRTSQL"
NBSERVER "THOR"
BROWSECLIENT "VIRTSQL-NB"
MAXTRANSFERSIZE 0
BLOCKSIZE 7
ENDOPER TRUE

11 Place the modified batch file on all nodes in the cluster or in a shared location. This way it is available for scheduled backups.

Backups are done regardless of which node is active when a backup is initiated.

Performing restores of a SQL Server cluster when you have multiple NICs

To perform restores of a SQL Server cluster in a multi-NIC environment, you need to do the following:

- Connect to virtual SQL Server host using the public name of the host.
- To browse for backup images, specify public name of the virtual SQL Server for the SQL Host name. Specify the private name of the virtual SQL Server for the Source Client.
- Create a batch file for the restore and manually edit it to include the private name of the virtual SQL Server.

If you do not have a cluster environment, you must follow a different procedure:
See “Performing restores of SQL Server when you have multiple NICs” on page 182.

To perform restores of a cluster when you have multiple NICs

1 On a specific node in the cluster, open the NetBackup for SQL Server interface.
2 Select File > Set SQL Server connection properties.
3 In the Host box, specify the public name of the virtual SQL Server host (virtsql).
4 Click Apply and Close.
5 Select File > Restore SQL Server objects.
In the Backup History Options dialog box, specify the following.

- **SQL Host**: Public name of the virtual SQL Server (\virtsql\).
- **Source Client**: Private name of the virtual SQL Server (\virtsql-NB\).

Click OK.

Select the databases to restore. See “Options for NetBackup for SQL Server restores” on page 69.

**Note**: Do not try to perform an immediate restore from the restore dialog box. The generated batch files must be modified before they can be run successfully.

Select the restore options.

From the Restore script options, select Save.

Click Restore.

The NetBackup MS SQL Client generates a batch file that is similar to the following.

```
OPERATION RESTORE
OBJECTTYPE DATABASE
DATABASE "ACCOUNTING"
NBIMAGE "SQLHOST1.MSSQL7.VIRTSQL.db.ACCOUNTING.~.7.001of001.20040306111309..C"
SQLHOST "VIRTSQL"
NSERVER "THOR"
BROWSECLIENT "VIRTSQL"
MAXTRANSFERSIZE 0
BLOCKSIZE 7
RESTOREOPTION REPLACE
RECOVEREDSTATE RECOVERED
ENDOPER TRUE
```
12 Change the line value that is associated with `BROWSECLIENT` from the public name of the virtual SQL Server to the private name.

```
OPERATION RESTORE
OBJECTTYPE DATABASE
DATABASE "ACCOUNTING"
NBIMAGE "SQLHOST1.MSSQL7.VIRTSQ.db.ACCOUNTING~.7.001of001.20040306111309..C"
SQLHOST "VIRTSQ"
NBSERVER "THOR"
BROWSECLIENT "VIRTSQ-NB"
MAXTRANSFERSIZE 0
BLOCKSIZE 7
RESTOREOPTION REPLACE
RECOVEREDSTATE RECOVERED
ENDOPER TRUE
```

13 Select File > Manage script files.

14 Select the modified batch file and click Start.
Performance and troubleshooting

This chapter includes the following topics:

- What are the components of NetBackup for SQL Server?
- How does NetBackup for SQL Server back up a database?
- How does NetBackup for SQL Server recover a database?
- Performing a manual backup
- About debug logging for SQL Server troubleshooting
- About NetBackup for SQL performance factors
- About monitoring NetBackup for SQL Server operations
- Setting the maximum trace level for NetBackup for SQL Server
- Troubleshooting credential validation
- Reporting of unsuccessful filegroup or file backups
- About minimizing timeout failures on large SQL Server database restores
- Troubleshooting VMware backups and restores of SQL Server
- Delays in completion of backup jobs
- SQL Server log truncation failure during VMware backups of SQL Server
- SQL Server restore fails when you restore a SQL Server compressed backup image as a single stripe or with multiple stripes
- Incorrect backup images are displayed for availability group clusters
A restore of a SQL Server database fails with Status Code 5, or Error (-1), when the host name of the SQL Server or the SQL Server database name has trailing spaces.

A move operation fails with Status Code 5, or Error (-1), when the SQL Server host name, the database name, or the database logical name has trailing spaces.

About disaster recovery of SQL Server.

What are the components of NetBackup for SQL Server?

Table 13-1 describes the components of NetBackup for SQL Server.

<table>
<thead>
<tr>
<th>Component</th>
<th>Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>graphical user interface (GUI)</td>
<td>dbbackup.exe</td>
<td>You use this interface to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Browse database objects and backup images.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Create restore scripts and launch restore operations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Legacy SQL Server policies) Create backup scripts and launch backup operations.</td>
</tr>
<tr>
<td>driver</td>
<td>dbbackex.exe</td>
<td>Launches backup and restore operations.</td>
</tr>
<tr>
<td>library</td>
<td>dbbackmain.dll</td>
<td>Facilitates backup and restore activities, access to SQL Server, and other operations that NetBackup for SQL Server performs.</td>
</tr>
</tbody>
</table>

These components also interface with \`VxBSA.dll\`, which is a common NetBackup client module that connects NetBackup for SQL Server to the NetBackup server.

Figure 13-1 shows the relationships of NetBackup for SQL Server with other software components.
The following interactions occur between NetBackup for SQL Server and other software components:

- Every backup or restore operation is initiated through `dbbackex.exe`, in one of the following ways:
  - Scheduled backups
    The NetBackup scheduler calls `bphdb (1)`, which calls `dbbackex (2)`.  
  - GUI-initiated backups
    `dbbackup.exe` invokes `dbbackex.exe (3)`.  
  - Command line
    `dbbackex.exe` is invoked directly from a command line or third-party tool.  

- `dbbackex.exe` makes function calls to `dbbackmain.dll (4)` to facilitate a backup or a restore operation. The operation is carried out as `dbbackmain.dll facilitates one or more data streams between SQL Server and NetBackup server. The data stream (7) is established through VDI (5) and the XBSA interface (6). VDI interacts with SQL Server whereas XBSA interacts with the NetBackup database client.
How does NetBackup for SQL Server back up a database?

When a backup is executed, NetBackup for SQL Server does the following: creates a backup script, generates an SQL Server backup statement, logs into SQL Server, and delivers the SQL statement to SQL Server through ODBC. Next, the database agent connects to SQL Server through one or more VDI objects. One virtual device is created per backup stripe. In addition, a VxBSA session is initiated for each stripe. These separate sessions allow NetBackup to start a backup job for each stream that is generated from SQL Server.

When the backup completes, the database agent obtains detailed properties of the object that was backed up, including its relationships to other objects. The agent writes this information to the NetBackup catalog and associates it with the backup image. If there are multiple stripes, then the metadata is associated with the first backup image. The adjunct stripes are associated with one another based upon a common naming convention.

How does NetBackup for SQL Server recover a database?

The NetBackup MS SQL Client displays backup images in a logical hierarchy that mirrors the composition of the database. If you select a transaction log or differential image, then NetBackup examines the metadata that is stored with the images for the selected database. It then determines the most efficient recovery set. Then the agent generates a batch file that includes a sequence of scripted restores. When the scripts are executed, the database is recovered.

The individual restore operations work in a similar manner to backups. A SQL Server restore statement is generated and provided to SQL Server by ODBC. A VDI
connection is made. Then a VxBSA session is initiated that starts the data flow between the media manager and SQL Server. NetBackup determines the number of streams (and the corresponding virtual devices and VxBSA sessions) by the number of stripes that were generated during backup.

After all of the recovery operations have completed, the SQL Server agent takes the final step that sets the database into the recovered state. The database goes back online and becomes available for use.

**Performing a manual backup**

After you configure the servers and clients in your environment, you can test the configuration settings with a manual backup. Perform a manual backup (or backups) with the automatic backup schedules you created.

**To perform a manual backup**

1. In the left pane, click **Policies**.
2. In the **All Policies** pane, select the policy you want to test.
3. Select **Actions > Manual Backup**.
4. Select the schedule that you want to use for the manual backup.
5. For SQL Server Intelligent Policies, select the databases or instances that you want to include for the manual backup. For legacy SQL Server policies, select the clients that you want to include for the manual backup.

**About debug logging for SQL Server troubleshooting**

NetBackup offers a comprehensive set of debug logs for troubleshooting issues that can occur during NetBackup operations. You can create individual logs or use a script to create all NetBackup debug logs. For details on the contents of these debug logs, see the **NetBackup Troubleshooting Guide**.

**Backup operation debug logs**

After you perform a backup, debug logging information is placed in the `install_path\NetBackup\logs` directory. A subdirectory is created for each process. The debug log file is named `ALL_ADMINS.mmdyy_0000x.log`. For Veritas Unified Logging (VxUL), the log file is in a format that is standardized across Veritas products.
Client  Refer to the following logs:
- bphdb (scheduled backups only)
- dbclient
- ncfnbcs (VxUL)
- nbdisco (VxUL)
- user_ops\mssql\logs

Snapshot backups  Refer to the following logs:
- bpbkar (Snapshot Client)
- nbfsd (Snapshot Client)
- bppfi (Instant Recovery)

VMware backups  For ASC issues and failures, the following logs are created on the VM that is backed up:
- bpbkar
- dbclient
- ncfnbcs (VxUL)

**Restore operation debug logs**

The following logs apply to restore operations.

Client  Refer to the following logs:
- bpbkar (Snapshot Client)
- bpfis (Snapshot Client)
- bppfi (Instant Recovery)
- dbclient
- user_ops\mssql\logs

VMware restores from snapshots using Replication Director  See the Veritas VSS provider logs.

See “Veritas VSS provider logs” on page 195.
Create all debug logs

To create all debug logs

◆ Run the following batch file:

\install_path\NetBackup\logs\mklogdir.bat

Setting the debug level

To control the amount of information that is written to the debug logs, change the Database debug level. Typically, the default value of 0 is sufficient. However, technical support may ask you to set the value higher to analyze a problem.

The debug logs are located in \install_path\NetBackup\logs.

Information is also available about the Client Trace Level. See “Setting the maximum trace level for NetBackup for SQL Server” on page 201.

To set the debug level

1. Open the Backup, Archive, and Restore interface.
2. Select File > NetBackup Client Properties.
3. Click the Troubleshooting tab.
4. Set the General debug level.
5. Set the Verbose debug level.
6. Set the Database debug level.
7. Click OK to save your changes.

Veritas VSS provider logs

The Veritas VSS provider records its activities in Windows Event Logs. Debug logs are also available at the following location:

\install_path\Veritas VSS provider\logs

Enabling Veritas VSS provider logging in the registry

Enable the Veritas VSS provider logging on the NetBackup computer where SQL Server is installed.

To enable Veritas VSS provider logging in the registry

1. Log on as administrator on the computer where NetBackup is installed.
2. Open Regedit.
3 Open the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Veritas\NetBackup\CurrentVersion\Config

4 Create a new DWORD value named `CreateDebugLog`.

5 Right-click on the new value and click `Modify`.

6 In the `Value data` box, enter `1`.

7 Click `OK`.

### Increasing the Veritas VSS provider log debug level

To increase the log debug level modify both the `pre-freeze-script.bat` and `post-thaw-script.bat` files in the `C:\Windows` folder. Add the `-log` parameter to the script, at the line where `BeVssRequestor.exe` is called. VMware determines which script is invoked.

**To increase the Veritas VSS provider log debug level**

1 Change the following line in the `pre-freeze-script.bat`:

   `BeVssRequestor.exe -pre2 -logscreen !SkipExReplica! !SkipSQL! !VMBackupType! !ExcludeList!`

   to:

   `BeVssRequestor.exe -pre2 -logscreen !SkipExReplica! !SkipSQL! !VMBackupType! !ExcludeList! -log`

2 Also change the following line in the `post-thaw-script.bat`:

   `BeVssRequestor.exe -post2 -logscreen !SkipExReplica! !SkipSQL! !VMBackupType! !ExcludeList!`

   to:

   `BeVssRequestor.exe -post2 -logscreen !SkipExReplica! !SkipSQL! !VMBackupType! !ExcludeList! -log`

---

**About NetBackup for SQL performance factors**

Many factors can influence the backup performance, including your hardware environment and the settings in SQL Server and NetBackup.

**Note:** Some of the factors are only applicable to SQL Server stream-based operations and have no effect on snapshot backups or restores.
For a SQL Server Intelligent policy, set these parameters in the policy, on the Microsoft SQL Server tab. For a backup batch file (legacy SQL Server policy) or for a restore batch file, configure these parameters in the NetBackup MS SQL Client interface. The parameters in the NetBackup client properties are saved for the session.

**NetBackup for SQL buffer space parameters**

The **Maximum transfer size**, **Backup block size**, and **Client buffers per stripe** can increase buffer space in SQL Server. SQL Server must have the available resources to support the increase of these values. Buffer space parameters are applicable for stream-based backups only.

The **Maximum transfer size** parameter can be set for each backup or restore operation. **Maximum transfer size** is the buffer size used by SQL Server for reading and writing backup images. Generally, you can get better SQL Server performance by using a larger value.

The **Backup block size** parameter can be set for each backup operation. For restore operations, NetBackup automatically chooses the same size that that was used for the backup. **Backup block size** is the incremental size that SQL Server uses for reading and writing backup images.

The **Client buffers per stripe** determines how many buffers to allocate for reading or writing each data stream during a backup or restore operation. Setting this factor to a value greater than 1 enables multi-buffer during data transfer. By allocating a greater number of buffers, you can affect how quickly NetBackup can send data to the NetBackup media server. Multi-buffer prevents short-term producer-consumer imbalances during a backup or restore operation. Although you can set the number of buffers as high as 32, normally a value of 2 or 3 is sufficient.

**Stripes and parallel backup operations**

You can improve performance and throughput by increasing the backup stripes or parallel backup operations, depending on the size and number of databases.

Enabling multiple stripes (**Number of backup stripes**) is useful for larger databases when the performance gains outweigh the additional overhead necessary for the SQL Server agent to configure them. When protecting smaller databases, striping can decrease performance speed. In general, if the SQL Server instance only has a few large databases, the use of stripes improves performance. If the instance has numerous smaller databases, increasing the amount of **Parallel backup operations** is a better choice to improve performance. You can increase both stripes and parallel backup operations at the same time, but be careful not to overwhelm the system resources.

See “Configuring the number of jobs allowed for backup operations” on page 62.
Caution: Do not enable multiplexing if the policy is also configured with multiple stripes. Restores fail when both multiplexing and multiple stripes are configured for a backup policy.

Shared memory usage

Optimal performance is seen if you install NetBackup server on the same host as NetBackup for SQL Server. Also use shared memory for data transfer instead of sockets. Shared memory is the default for this configuration and is used unless you create a `install_path\NetBackup\NOSHM` file.

Alternate buffer method

NetBackup for SQL Server supports an alternate buffer method. It optimizes CPU usage by allowing NetBackup and SQL Server to share the same memory buffers without transferring data between them.

The alternate buffer method for backup and restore typically does not improve data transfer rate, only CPU utilization. A situation may occur in which the transfer rate is significantly degraded when alternate buffer method is in use. To improve the transfer rate set the `Maximum transfer size` for the backup to the maximum allowed, which is 4 MB.

About alternate buffer method with backup operations

This method is chosen automatically for backups if all of the following conditions apply:

- NetBackup shared memory is in use.
- The backup is stream-based.
- The backup is not multiplexed.
- The backup policy does not specify either NetBackup compression or NetBackup encryption.
- The NetBackup buffer size equals the SQL Server block size.

The default NetBackup buffer size is 64 KB, but this value can be overridden in the following settings:

```
install_path\NetBackup\db\config\SIZE_DATA_BUFFERS (for tape backups),
```

or,

```
install_path\NetBackup\db\config\SIZE_DATA_BUFFERS_DISK (for disk backups)
```

- NetBackup for SQL Server agent is started with the same account as the NetBackup Client Service.

The backups that are initiated from an automatic backup policy are started with the NetBackup Client Service so the same account is already in use. However,
you can start a SQL Server backup through NetBackup for SQL Server or through dbbackex. In this case, your logon account must be the same as the NetBackup Client Service account. Then your backups can be candidates for the alternate buffer method.

**About alternate buffer method with restore operations**

Conditions for backups require that you use the alternate buffer method. Restores also require that backups have been made with the alternate buffer method. You can verify that the alternate buffer method was used. Look for the words Using alternate buffer method, which appear in the dbclient log and the progress report.

**Microsoft SQL Server checksum**

You can choose to perform a checksum before you perform a backup. When this option is enabled, it imposes a performance penalty on a backup or restore operation.

For legacy backup policies, set the **Page verification** value when you create the script. For restore scripts, choose **Verify backup image, but don't restore** option when you create the script.

**Instant data file initialization**

When you restore a database, filegroup, or database file, SQL Server zeroes the file space before it begins the restore operation. This action can slow the total recovery time by as much as a factor of 2. To eliminate file initialization, run the MSSQLSERVER service under a Windows account that has been assigned the SE_MANAGE_VOLUME_NAME. For more information, see the SQL Server and the Windows documentation.

**Using read-write and read-only filegroups**

You can significantly reduce backup time and the storage media that is needed if you periodically back up only read-write filegroups. Then keep a single backup of read-only filegroups, which is retained infinitely. You can set the retention level in the schedule.

**About monitoring NetBackup for SQL Server operations**

Use the Activity Monitor in the NetBackup Administration Console to monitor NetBackup for SQL Server operations.
The agent also creates its own progress reports that you can view in the NetBackup MS SQL Client interface. Select File > View status to view the reports. The reports are saved in \install_path\NetBackup\logs\user_ops\MsSql\logs.

Job details and progress reports include the following types of information:

- Summary information about the operation
- Information about the operation as it progresses
- Any error conditions or warnings that cause the operation to fail
- The final outcome of the operation, whether it succeeded or failed, and how long it took

The progress reports also provide additional details for operations, including the following:

- The SQL Server commands that NetBackup included in the batch file for operation.

```
OPERATION BACKUP
DATABASE "TestDB1"
OBJECTTYPE DATABASE
COPYONLY FALSE
BLOCKSIZE 7
MAXTRANSFERSIZE 6
NUMBUFS 2
STRIPES 1
SQLCOMPRESSION FALSE
VERIFYOPTION NONE
```

- The NetBackup server that performed the backup, the SQL Server instance and host you selected for the backup, and other policy information.

```
NBSERVER "servera"
SQLINSTANCE "SQL2K14"
SQLHOST "SERVERA"
POLICY "sql-server"
NBSCHED "full"

INF - Setting backup catalog name to: servera
```

- Progress of the backup or restore operation and any errors or failures that SQL Server encountered.

```
```
USER - Operation inhibited by NetBackup for Microsoft SQL Server: Only a full or incremental database backup can be performed on database <Archive> because it uses the simple recovery model or has ‘truncate log on checkpoint’ set.

INF - OPERATION #1 of batch
C:\NBU\Veritas\NetBackup\dbext\mssql\temp\__01_35_42_508_00.bch
FAILED with STATUS 1 (0 is normal). Elapsed time = 6(6) seconds.

INF - Results of executing
<C:\NBU\Veritas\NetBackup\dbext\mssql\temp\__01_35_42_508_00.bch>: 
<0> operations succeeded. <1> operations failed.

INF - The following object(s) were not backed up successfully.

INF - Archive

---

Setting the maximum trace level for NetBackup for SQL Server

**Note:** For SQL Server backups, this feature is only available with legacy SQL Server backup policies.

You can set the maximum trace level in the NetBackup MS SQL Client or in the batch file. The maximum level produces large amounts of output, usually appropriate only for internal debugging.

**To set the maximum trace level in the NetBackup MS SQL Client**

1. Open the NetBackup MS SQL Client.
2. Select File > Set NetBackup client properties.
3. In the Client Trace Level group, select Maximum.

**To set the maximum trace level in the backup or restore batch file**

1. Open the NetBackup MS SQL Client.
2. Select File > Manage script files.
3. Select the batch file you want to change and click Open File.
Add the following line:
TRACELEVEL MAX

Save the file.

Troubleshooting credential validation

Table 13-2 describes the reasons that validation can fail for an instance, replica, or instance group.

<table>
<thead>
<tr>
<th>Status code or error</th>
<th>Description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Could not validate credentials. Failed to connect to client: &lt;client&gt;.</td>
<td>The host name is invalid.</td>
</tr>
<tr>
<td>46</td>
<td>The validation operation timed out waiting for a response from the client</td>
<td>You cannot connect to the host because the host is down.</td>
</tr>
</tbody>
</table>
| 41                   | Validation of operating system user/password failed for client: <client>. | • The host name is correct, but the user name or password is invalid.  
• The credentials use have the setting Use these specific credentials, but the user account does not have the required the local security privileges Impersonate a client after authentication and Replace a process level token.  
See “Configuring local security privileges for SQL Server” on page 26. |
| 1939                 | The specified user does not have SQL Server System Administrator privileges. | The credentials do not have the “sysadmin” role and the validation fails. |
| Invalid configuration detected. | Invalid configuration detected. The service user for the NetBackup Client and NetBackup Legacy Network services must be the same user. Change the service users in the Windows Service Manager and try again. | The NetBackup Client Service or the NetBackup Legacy Network Service requires but does not use the same user for the logon account.  
See “Configuring the NetBackup services for SQL Server backups and restores” on page 25. |
Reporting of unsuccessful filegroup or file backups

If you select specific databases and specific filegroups or files in a backup policy, NetBackup reports any unsuccessful filegroup or file backups differently than if you select an entire instance (DATABASE $ALL). Consider the following scenarios:

- **Scenario 1** - For SQLINSTANCE1 (DATABASE $ALL or all the databases), back up the filegroups FG1, FG2, and FG3. If NetBackup cannot back up FG1, FG2, or FG3, NetBackup skips the backup of the filegroup for that database. The parent job completes with a status 0.

- **Scenario 2** - For DATABASEA and DATABASEC in SQLINSTANCE1, back up the filegroups FG1, FG2, and FG3. If NetBackup cannot back up any of these filegroups for DATABASEA or DATABASEC, the parent job completes with a status 2. The job details indicate that one or more of the filegroups that you selected were not backed up.

About minimizing timeout failures on large SQL Server database restores

A large SQL Server restore may fail with a Client Read Timeout error before any data has been read from the NetBackup media. This error occurs because the SQL Server may need to pre-write the database files before the restore operation begins. The time that is required for this process is a function of certain factors: the size of the database files and the speed at which your host machine can write to disk. For example, consider that your system can perform disk writes at the rate of 60 megabytes per second and you have a 2.4 terabyte database. Then it takes at least 12 hours for SQL Server to prep the disk before the actual restore can begin. In reality, the delay may be even longer than what you calculate by as much as 20% to 40%.

The timeout problem can be resolved by increasing the NetBackup Client Read Timeout setting. Use the NetBackup Administration Console on the server to change the properties of each client that contains a database you may need to restore. The default for the Client Read Timeout setting is 300 seconds (5 minutes). If you have any clients which contain large SQL Server databases, you may need to set this value much higher.

You can eliminate file initialization during SQL Server restores. See the following topic:

See “About NetBackup for SQL performance factors” on page 196.
Troubleshooting VMware backups and restores of SQL Server

Note the following when you perform a VMware backup that protects an application:

- The Application State Capture (ASC) job contacts the NetBackup client on the guest virtual machine and catalogs the application data for recovery.
- One ASC job is created per VM, regardless of which applications are selected in policy.
- ASC messages are filtered to the ASC job details in the Activity Monitor.
- Failure results in the discovery job or parent job exiting with status 1.
- If you enable recovery for a particular application but that application does not exist on the VM, the ASC job returns Status 0.
- `bpfis` is executed and simulates a VSS snapshot backup. This simulation is required to gain logical information of the application.

<table>
<thead>
<tr>
<th>Issue</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A database backup fails.</td>
<td>Databases are cataloged and protected only if they exist in a configuration that is supported for VMware backups. The following disks are not supported: raw device mapping (RDMs), Virtual Machine Disk (vmdk) volumes that are marked as independent, virtual hard disks (VHDs), RAID volumes, ReFS file systems, or an excluded Windows boot disk. NetBackup is installed on an excluded Windows boot disk. The ASC job detects this type of disk and treats it like an independent disk. Do not select the <strong>Exclude boot disk</strong> option if NetBackup is installed on the boot drive (typically C:).</td>
</tr>
<tr>
<td>ASC job produces status 1 (partially successful).</td>
<td>You selected databases for backup that exist on both supported and on unsupported disks. See &quot;A database backup fails&quot; for unsupported disk information.</td>
</tr>
<tr>
<td></td>
<td>Full-text catalog files exist on the mounted folders. The databases are not cataloged.</td>
</tr>
</tbody>
</table>
### Table 13-3 Issues with using a VMware policy to protect SQL Server (continued)

<table>
<thead>
<tr>
<th>Issue</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| The Application State Capture (ASC) job fails and the databases are not protected. | When the ASC job fails, the VMware snapshot or backup continues. Application-specific data cannot be restored.  
When you query the SQL Server Management Studio (SSMS), it may show that the database was backed up. In this case, though the database was skipped, the snapshot was still successful.  
You disabled the **Virtual Machine quiesce** option.  
Database objects are on a VHD disk. No objects in the backup are not cataloged, including those that do not exist on the VHD.  
You excluded any data disks from the VMware policy, on the **Exclude Disks** tab. Be sure that any disks that you exclude do not contain SQL Server data.  
The VMware disk layout has changed since the last discovery. In this situation, you must force NetBackup to rediscove virtual machines by lowering the value of the **Reuse VM selection query results for** option. See the [NetBackup for VMware Administrator's Guide](http://www.veritas.com/docs/TECH198864).  
You cannot use a VMware incremental policy to protect SQL Server. However, the VMware backup job is successful. |

### Delays in completion of backup jobs

Sometimes you may see a NetBackup for SQL Server backup job complete the data transfer but appear to hang before the job completes. The delay may be due to one of the following:

- Network issues
- Storage transfer delays
- NetBackup server post-backup processing

To determine the cause of the delay, refer to the following article:

http://www.veritas.com/docs/TECH198864
SQL Server log truncation failure during VMware backups of SQL Server

SQL Server transaction log truncation may fail during VMware backups of SQL Server if a database name contains special characters or if the %TEMP% directory path is too long. During SQL Server log truncation, the NetBackup for SQL Server agent creates a temporary log backup. This backup specifies the current user’s configured %TEMP% directory and database name as part of the destination backup device. SQL Server limits the path that can be used for backup devices to 259 characters. Under certain circumstances the SQL Server agent may generate a backup device that is longer than 259 character and cause log truncation to fail.

The following conditions cause failure:

- A configured %TEMP% directory that is longer than 259 characters.
- When the combined length of the database name and %TEMP% directory path is longer than 259 characters.

One workaround for this issue is to configure the %TEMP% directory so that the path is substantially less than 259 characters long.

SQL Server restore fails when you restore a SQL Server compressed backup image as a single stripe or with multiple stripes

This issue occurs when SQL Server is busy with the buffer of compressed data and cannot process all the data that is sent within a certain length of time. By default in Windows Server, TCP connections must close after the TCP connection state has been set to FIN_WAIT_2 for two minutes. Refer to the following Microsoft article for more information:

https://support.microsoft.com/en-us/kb/923200/

**Note:** If the TCPFinWait2Delay value does not exist, you must create it as a REG_DWORD registry value. Otherwise, Windows uses the default value of 240.
To increase the time that TCP connections may remain in the FIN_WAIT_2 state

1. On the NetBackup media server, open regedit.exe.
2. Locate and select the following registry subkey:
   HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
3. Double-click on TCPFinWait2Delay.
4. Enter a value of 300.
5. Restart the media server.
6. After the restore completes successfully, remove the registry setting or change the setting to its original value.
   When you increase the value of this setting it has an adverse effect for all TCP/IP connections. This higher value could cause port exhaustion for other applications that run on the media server.
7. Restart the media server.

Incorrect backup images are displayed for availability group clusters

You can perform backups of multiple availability group clusters that have the same short cluster name but that exist in different domains. However, it is important to use the fully qualified domain name (FQDN) of the Windows Server Failover Clustering (WSFC) cluster when you browse for backups. In the NetBackup MS SQL Client, for the Source Client enter the FQDN of the WSFC cluster. If you use the short cluster name, NetBackup may not display the correct list of backup images.

A restore of a SQL Server database fails with Status Code 5, or Error (-1), when the host name of the SQL Server or the SQL Server database name has trailing spaces

When the host name of a SQL Server or a SQL Server database name has one or more trailing spaces, NetBackup does not generate the restore script correctly. The trailing spaces in the SQL Server host name or the database name are truncated in the script. To successfully perform a restore, you must create and edit a restore script in the NetBackup MS SQL Client.
In the script, edit the DATABASE and the NBIMAGE lines to include the correct SQL Server host name or SQL Server database name. For example, assume that the server host name is “ACCT “, you use the default instance, and that the database name is “DatabaseA “. Notice the trailing spaces after the server host name and the database name.

Change the following lines:

DATABASE "DatabaseA"
NBIMAGE "ACCT.MSSQL7.ACCT.db.DatabaseA.~.7.001of001.20151118121736..C"

To:

DATABASE "DatabaseA  
NBIMAGE "ACCT.MSSQL7.ACCT .db.DatabaseA .~.7.001of001.20151118121736..C"

**A move operation fails with Status Code 5, or Error (-1), when the SQL Server host name, the database name, or the database logical name has trailing spaces**

If the SQL Server host name, database name, or database logical name has one or more trailing spaces, a move operation fails with Status Code 5 or Error (-1). To successfully perform a move operation, you must create and edit a move script in the NetBackup MS SQL Client.

For information on a workaround for this issue, please see the following tech note on the Support website:

http://www.veritas.com/docs/000099850

**About disaster recovery of SQL Server**

SQL Server corrects itself automatically from temporary or minor problems. However, most disasters are beyond the scope of the automatic recovery feature. For example, if a database becomes severely corrupted, or there is a catastrophic failure, recovery is initiated by the system administrator.

User-initiated recovery can entail either restoring the entire server, including the SQL Server databases, from full system backups. Or recovery can include restoring only the SQL Server databases to a newly-installed or other available SQL Server.
Restoring the entire server has the added benefit of recovering other applications and data which may have resided on the server at the time of failure. Restoring be accomplished using one of the following methods:

- Manual recovery of the server. This method involves manually restoring the server from full system backups. See “Preparing for disaster recovery of SQL Server” on page 209.
- NetBackup Bare Metal Restore. BMR automates system recovery by restoring the operating system, system configuration, and all system files and data files. See the NetBackup Bare Metal Restore Administrator’s Guide for more information.

After recovery of the server is complete, or after the new server installation is available, recovery of the SQL Server databases can begin.

Preparing for disaster recovery of SQL Server

When you develop your SQL Server disaster recovery plan you need to plan how to recover from corruption of the master database. You also need to plan for loss of your host machine. If the master database has been corrupted, then SQL Server does not start. When disaster happens you may need to rebuild the system databases. This process, however, does not recreate the schema information of your application databases. To recover your database schema use the NetBackup MS SQL Client to restore your latest backup of the master database.

Disaster recovery of SQL Server assumes that you have already put in place a strategy to recovery from other sorts of data loss. Data loss can include disk, software, and human error. To prepare for disaster recovery you need to make frequent backups of the master database. Do frequent backups after you have added or dropped databases or carried out other operations that may result in schema definitions.

Recovering SQL Server databases after disaster recovery

For the purposes of disaster recovery, you should only restore to a new installation of SQL Server. However, you can restore an existing installation of SQL Server with other active databases. The server should be running the same version of Windows on the same hardware platform. It also should be running the same version of SQL Server with the same service pack as the original server.

To recover SQL Server databases

1 If you want to restore to an existing SQL Server, choose from one of the following:
For a new SQL Server installation or when the master database is intact, continue with step 4.

If the master database is corrupt, you must first rebuild the master database. Continue with step 2.

1. Refer to the following article for instructions on how to rebuild the master database. Click the “Other Versions” drop-down list to select the correct SQL Server version.


   Look for the information that describes how to rebuild system databases for a default instance from the command prompt.

2. When the rebuild is complete, restart the SQL Server services if necessary.

3. To begin the restore of the master database, start SQL Server in single-user mode.

   The procedure to start SQL Server in single-user mode is described in the following article:


   Click the “Other Versions” drop-down list to select the correct SQL Server version.

4. Open the NetBackup MS SQL Client interface.

5. Locate all the media that is required to perform the restore operations.


7. Select the backup image that contains the copy of the master database you want to restore.

   Select only the master database at this time.

8. Click Restore.

9. Restart the SQL Server service after the restore completes.

10. Continue with the restore of the remaining SQL Server databases.

    Follow the instructions for restoring SQL databases, differentials, transaction logs, files, and filegroups.

    When all of the restore operations have completed successfully, then the recovery of the SQL Server databases is complete.

    After the recovery is complete, Veritas recommends that you perform a full database backup as soon as possible.
Other configurations

This appendix includes the following topics:

- Configuring multiplexed backups of SQL Server
- Restoring a multiplexed SQL Server backup
- About SQL Server backups and restores in an SAP environment
- Configuring NetBackup to support database log-shipping
- Backing up SQL Server in an environment with log shipping

Configuring multiplexed backups of SQL Server

Multiplexing lets you interleave multiple backups to the same tape. This feature is useful if you have many simultaneous backups that use the same tape drive.

However, multiplexing can interfere with SQL Server recovery due to how SQL Server requests streams during a restore. If you enabled multiplexing for multistreamed backups, see the information on how to perform restores. To restore a multiplexed backup, you must configure the restore for one stripe.

See "Restoring multistreamed SQL Server backups" on page 83.

Configure the following to create a multiplexed backup:

- In the backup policy, select the number of **Stripes** you want to use.
  
  For SQL Server Intelligent policy, configure this setting on the **Microsoft SQL Server** tab. For legacy SQL Server policies, configure the **Stripes** setting when you create the backup batch file.

- In the schedules for your policy, set **Media multiplexing** to the number of backup stripes that you want to use.
  
  For legacy SQL Server policies, enable multiplexing in the “Application Backup” schedule.
In the storage units that are associated with this schedule, select **Enable Multiplexing** and set **Maximum streams per drive** to the number of stripes that you want to use.

### Restoring a multiplexed SQL Server backup

In most cases, Veritas does not recommend multiplexing multiple SQL Server streams from the same backup to a single tape. However, you may want to do this if you vault or export backup images. During the restore of this type of multiplexed backup, NetBackup may time out while trying to synchronize access to data blocks from the backup tape. To prevent this time out, change the stripes parameter in the recovery batch file from `STRIPES N` to `STRIPES 1`.

When you change this value it causes the restore to be performed in a single-stream. NetBackup presents the `N` backup images to SQL Server one at a time. The tape is rewound between the restore of each image.

### About SQL Server backups and restores in an SAP environment

**Note:** SQL Server in an SAP environment is not supported for SQL Server Intelligent Policy.

With NetBackup you can perform scheduled SAP backups, in accordance with a predefined backup strategy, or manual backups. These backups may not be planned and may be necessary in exceptional situations. The practices that are described here are based on the practices SAP recommends in SAP/MS SQL Server DBA in CCMS.

The NetBackup backup and restore procedures for the SAP R/3 database are identical to the NetBackup procedures with any other SQL Server database.

You can create scripts to perform full or differential backups of databases and backups of transaction logs. In addition to the database backups and restores, NetBackup also provides the capabilities to back up the SAP file systems.

### Creating batch files for automatic backups in for SQL Server in an SAP environment

NetBackup for SQL Server uses batch files to initiate database backup and restore operations. A batch file must be created for database backups and for transaction
Creating a batch file for database backups

This topic describes how to create a batch file for database backups.

To create a script for database backups

1. Open the NetBackup MS SQL Client.
2. Select File > Backup SQL Server objects.
3. In the Backup Microsoft SQL Server Objects dialog box, in the left pane, expand the database instance.
4. In the right pane, select the R/3 database.
5. From the Type of Backup list, select the type of backup you want to perform, Full, or Full differential.
6. Under Backup Script, select Save.
7. Click Backup.
8. Specify a file name and click Save.
   Alternatively, you can select the name of an existing file, and NetBackup appends the new script to it.
9. Click Yes to open and edit the batch file.

Creating a batch file for transaction log backups

This topic describes how to create a batch file for transaction log backups.

To create a batch file for transaction log backups

1. Before starting a transaction log backup, the database administrator should set the Transaction log backup options database option to off. This option on the SQL Server interface applies to the databases.
   The entire sequence of transaction logs generated following any database dump must be maintained on the same NetBackup server. NetBackup for SQL Server requires that you follow these guidelines in devising your backup strategy to ensure success in restoring your database.
2. Select File > Backup SQL Server objects.
3. In the Backup Microsoft SQL Server Objects dialog box, in the left pane, expand the database instance.
4. In the right pane, select the R/3 database.
5  For the **Type of Backup**, select **transaction log**.
6  Under **Backup Script**, select **Save**.
7  Click **Backup**.
8  Specify a file name and click **Save**.
   Alternatively, you can select the name of an existing file, and NetBackup appends the new script to it.
9  Click **Yes** to open and edit the batch file.

**Monitoring backups on SQL Server**

Check scheduled backups regularly to ensure that they completed successfully.
Always check the following:

- That the most recent backup has run successfully.
  See “About monitoring NetBackup for SQL Server operations” on page 199.
- All the backups in the backup cycle are executed according to the schedule.
  Gaps in a backup sequence can have serious consequences in a subsequent attempt to restore the database.

**Restoring the R/3 database**

This topic describes how to restore the R/3 database.
Determine how to perform the restore based on the following scenarios:

- If you have scheduled differential backups, review the information for that type of restore.
  See “About including differential backups in a restore operation” on page 214.
- If the R/3 database disk system is damaged or the transaction log disk system is damaged, follow the instructions for that scenario.
  See “Restoring the R/3 database after a disk crash” on page 215.
- To perform a regular restore of the R/3 database, follow the instructions for that type of restore.
  See “Restoring the database backups and transaction log backups” on page 216.

**About including differential backups in a restore operation**

If you incorporated differential backups in the backup strategy, the restore process differs depending on the type of backups available.
Determine how to perform the restore based on which of the following differential backups you have:
If differential backups were made after the last full database backup, restore the last database backup that is followed by the most recent differential backup. Then apply all subsequent transaction logs.

If no differential backups were made since the last full database backup, restore the last full database backup and then apply all subsequent transaction logs.

If several differential backups are available but the latest one cannot be read, restore the most recent full database backup. And restore the latest readable differential backup and apply all subsequently created transaction logs.

### Restoring the R/3 database after a disk crash

This topic describes how to restore the database when the R/3 database disk system is damaged or the transaction log disk system is damaged. This process is only applicable to a configuration with three disk systems: one system for the R/3 database, one for the R/3 transaction logs and one for all others.

**Note:** The R3 database must not be in use when you are performing a restore operation. Make sure that all SAP services are stopped before you attempt a restore with NetBackup.

**Warning:** If the disk system on which the R/3 database resides is damaged, it is vital to immediately back up the currently active transaction log. This log backup is done to prevent loss of data. Without a backup of the current log, the database can only be restored to the status at the time of the last transaction log backup. If work has been carried out on the R/3 system since then, this work is lost.
To restore the R/3 database after a disk crash

1. Back up the current transaction log.
2. Replace damaged disks.
   Replacing damaged disks in a RAID disk system is normally a straightforward procedure. If you are uncertain how to proceed, see the documentation of your hardware vendor to learn how to handle the disks. The new disks must be formatted and assigned the same drive letter as the old disks.
3. Restore the database logs and transaction logs.
   The central phase of a restore operation is the reloading of the database backup and the application of the available transaction logs. When the database backup is reloaded, the database files are automatically recreated. The data is copied from the backup device to the newly created files. Once this copy has been done, the transaction logs are applied in the same sequence as they were originally made. In a final step, open transactions that were not completed at the time of the database failure are rolled back.

Restoring the database backups and transaction log backups

NetBackup MS-SQL server agent GUI provides for automatic staging. By selecting the latest transaction log backup, the GUI automatically restores the previous full database backup. It also restores any optional differential backups and subsequent transaction log backups. You can also use the option to specify a point in time to which to restore to.

**Note:** The R3 database must not be in use when performing a restore operation. Make sure that all SAP services are stopped before you attempt a restore with NetBackup.

**Warning:** To restore the R/3 database you first restore the most recent database backup and then the subsequent transaction logs. During the entire procedure, do not execute any transactions and do not shut down the database server. A server shutdown would write a checkpoint to the log and as a result you would not be able to restore further transaction logs.

To restore the database backups and transaction log backups

1. Restore the most recent database backup.
2. Restore the latest differential database backup (if available).
3. Restore all succeeding transaction log backups.
4. Restore the latest transaction log backup.

About manual backups of SQL Server in an SAP environment

The administrator on the master server can use the NetBackup Administration Console to manually execute an automatic backup schedule. This schedule can be for an "MS-SQL-Server" policy, where the R/3 database is specified in the backup script.

For more information, see the section on manual backups in the NetBackup Administrator’s Guide, Volume I.

About policy configuration for SQL Server in an SAP environment

To automatically perform backups of an SAP environment, you need to create backup policies. A backup policy with the "MS-SQL-Server" policy type that is selected must be created for R/3 database backups. Batch files, which initiate the backup of the database and transaction logs, must be added to the backup selections list in the policy.

Information is available for how to create the batch files that are needed and how to configure backup policies.

For backups of the executables disk (a file-system backup), a backup policy must be created with the Windows policy type selected.

For information on Windows policies, see the NetBackup Administrator’s Guide, Volume I.

Configuring NetBackup to support database log-shipping

Log shipping is a SQL Server feature that may be employed to enhance the overall availability of your installation. It uses a primary server, which contains the active database, a monitor, and one or more secondary servers. Under log shipping, copies of the transaction log are supplied to the secondary servers on a per-transaction basis to the secondary servers. This configuration allows each secondary server to be in a standby state in case the primary goes offline.

To use log-shipping with NetBackup, both the primary and the secondary should be set up as clients of the same master server. You must disable log truncation for the transaction log backups.
To configure NetBackup to support database log-shipping

1 The hosts that contain both databases should specify the same master server in their server lists.

2 Any policy that is used to back up the primary should also specify the host that contains the secondary database.
   See “Backing up SQL Server in an environment with log shipping” on page 218.

3 On the master server, configure permissions for redirected restores for both the primary and the secondary server.
   See “Configuring permissions for redirected restores” on page 79.

**Backing up SQL Server in an environment with log shipping**

Many sites also use the secondary server to off-load certain activities from the primary to minimize its load. However, a backup must not be performed on a secondary (or standby) server. Databases must always be backed up on the primary server and restored on the primary server. This requirement is based on the Microsoft SQL Server restriction that is outlined in Microsoft knowledge base article 311115.

If you try to perform a backup on the secondary server, you see a message in the dbclient log similar to the following:

```
16:33:26 [1208,2348] <16> CODBCaccess::LogODBCerr: DBMS MSG - ODBC message. ODBC return code <-1>, SQL State <37000>, Message Text <[Microsoft][ODBC SQL Server Driver][SQL Server]Database 'Mumbo' is in warm-standby state (set by executing RESTORE WITH STANDBY) and cannot be backed up until the entire load sequence is completed.>
```
Register authorized locations

This appendix includes the following topics:

- Registering authorized locations used by a NetBackup database script-based policy

Registering authorized locations used by a NetBackup database script-based policy

During a backup, NetBackup checks for scripts in the default script location and any authorized locations. The default, authorized script location for UNIX is `usr/openv/netbackup/ext/db_ext` and for Windows is `install_path\netbackup\dbext`. If the script is not in the default script location or an authorized location, the policy job fails. You can move any script into the default script location or any additional authorized location and NetBackup recognizes the scripts. You need to update the policy with the script location if it has changed. An authorized location can be a directory and NetBackup recognizes any script within that directory. An authorized location can also be a full path to a script if an entire directory does need to be authorized.

If the default script location does not work for your environment, use the following procedure to enter one or more authorized locations for your scripts. Use `nbsetconfig` to enter an authorized location where the scripts reside. You can also use `bpsetconfig`, however this command is only available on the master or the media server.
Note: One recommendation is that scripts should not be world-writable. NetBackup does not allow scripts to run from network or remote locations. All scripts must be stored and run locally. Any script that is created and saved in the NetBackup db_ext (UNIX) or dbext (Windows) location needs to be protected during a NetBackup uninstall.

For more information about registering authorized locations and scripts, review the knowledge base article:
http://www.veritas.com/docs/000126002

To add an authorized location

1. Open a command prompt on the client.

2. Use `nbsetconfig` to enter values for an authorized location. The client privileged user must run these commands.

   The following examples are for paths you may configure for the Oracle agent. Use the path that is appropriate for your agent.

   - On UNIX:

     ```
 [root@client26 bin]# ./nbsetconfig
 nbsetconfig>DB_SCRIPT_PATH=/Oracle/scripts
 nbsetconfig>DB_SCRIPT_PATH=/db/Oracle/scripts/full_backup.sh
 nbsetconfig>
 <ctrl-D>
     ```

   - On Windows:

     ```
 C:\Program Files\Veritas\NetBackup\bin>nbsetconfig
 nbsetconfig> DB_SCRIPT_PATH=c:\db_scripts
 nbsetconfig> DB_SCRIPT_PATH=e:\oracle\fullbackup\full_rman.sh
 nbsetconfig>
 <ctrl-Z>
     ```

Note: Review the NetBackup Command Reference Guide for options, such as reading from a text file and remotely setting clients from a NetBackup server using `bpsetconfig`. If you have a text file with the script location or authorized locations listed, `nbsetconfig` or `bpsetconfig` can read from that text file. An entry of `DB_SCRIPT_PATH=none` does not allow any script to execute on a client. The `none` entry is useful if an administrator wants to completely lock down a server from executing scripts.
3 (Conditional) Perform these steps on any clustered database or agent node that can perform the backup.

4 (Conditional) Update any policy if the script location was changed to the default or authorized location.